
A Framework for Program Recovery Using Checkpointing in UNIX
Kamal R. Prasad

Kip Macy
kamalp@acm.org

Abstract

Checkpointing is a means to save a
copy of a temporal copy of a process,
so that it can be resumed at a later point
of time. The C language is a loosely
typed language which makes it possible
via pointers to corrupt the process
address space. In addition, programs
like network daemons are exposed to
various types of denial of service
attacks -which exploit loopholes in the
standards to which the daemons
adhere. User-directed checkpointing
can help the program to recover itself in
case of a crash and possibly use
information logged during execution to
prevent a similar crash. We discuss an
implementation of checkpointing on
DragonFlyBSD of one such framework.

1. Introduction

A typical C program has an initialization
state, one or more states wherein it
waits for input and transitions to other
states based on input and finally a
termination state. In between these
states, the process can be said to be in
transition. The initialization state is
started by invoking main() from libcrt0.a
and the termination state is reached by
calling _exit(). In case of a malicious
pointer activity which could be either a
result of overflow or unexpected input,
the process space gets corrupted but no
signal is sent immediately on account of
C being a loosely typed language. By
the time the signal is sent, the process
space is corrupted beyond any remedy.
In effect, the least expensive remedy is
to restore the process to one of the
numerous states.
We describe the ideas that have gone
into
 the implementation of such a

checkpoint and recovery mechanism in
DragonFlyBSD which is a fork of the
FreeBSD 4.4 distribution.

2. Implementation

The implementation consists of a few
system calls which the program requiring a
recovery would have to use. The basic
system call is sys_checkpoint() to save and
restore the process image. For
convenience, we have defined two macros:-

#define tsetjmp() sys_checkpoint
(CHKPT_FREEZE)
#define tlongjmp(x) sys_checkpoint
(CHKPT_THAW, x)

tsetjmp() returns a checkpoint descriptor
and sets errno on failure.
tlongjmp() returns 0 on sucess and -1 on
failure in addition to setting errno.
tlongjmp() takes a checkpoint descriptor as
argument. An argument of 0 will result in
the last checkpoint to be restored.
Checkpoint descriptors are enumerated
from 1 onwards and tlongjmp(1) will result
in the first checkpoint being restored.

The routine sys_checkpoint() in case of a
freeze, opens a file and writes the process
image to disk using the same routine as
that for doing a coredump. It creates the
target file as /
tmp/<programname>.<pid>.<checkpoint
descriptor>. The global and private shared
memory mappings as well as the open file
descriptors are saved in the image. Unlike a
normal coredump, we save the list of open
file descriptors too. In case of a thaw, it
opens the associated file as specified by
the checkpoint descriptor and overlays the
process with the checkpointed data. If the
program were to acquire a global resource
eg:- a semaphore and do a tsetjmp() after
the resource is acquired and free it up and

then do a tlongjmp(), it will result in the
program not functioning correctly. This
is because theoretically, the system
cannot assume a tlongjmp()'s
occurrence and even if it did, holding
back the resource would break the
functionality of releasing the global
resource and/or preventing other
processes from going forward. The
signal mask for the process is also
saved and restored.

Often, a programmer wants to retain
some state information across a
tlongjmp(). For this, we have
provided a system call persist()
which takes a useraddress and the
size of of user memory that must
persist across a tlongjmp(). It is
defined as:-
int persist(caddr_t loc, int size).
Once the user addr is made
persistent, all changes to the
useraddress are reflected by doing a
copyin() before overlaying the old
process image and a copyout() after
bringing in the new process image.
Should a program error cause
corruption of persistent memory, the
same corruption will reflect after a
tlongjmp() and cause the same error
to occur.

To overcome this problem, we have
defined another system call:-
 int cache(int dir, caddr_t loc, int
size);

dir can be IN or OUT. The other two
parameters are same as that for
persist. Unlike persist, cache()
copies into kernel memory and out
from kernel to usermemory as and
when the system call is executed.
The user program can perform range
checking and any other tests to
ensure the program space is sane

before caching the data. This comes at
a cost because for every update to the
user location, the programmer has to
make one system call. So, it is advised
to make variables that perform an
iteration persistent and cross check
after a longjmp() is the values are sane.
 In addition, we have defined another
system call chkpt_status() which reflects
the status of the checkpoint/recovery
activity in the current process.

Int chkpt_status(int type).
Type = CHKPT_RECOVERED returns 1
if a recovery has been made.
Type = CKPT_FROM_STATE returns
the state from which a recovery has
been done. It returns EINVAL if no
recovery has been made.
Type=CKPT_TO_STATE returns the
state to which a recovery was done. If
no recovery was done, it returns EINVA.
Type = CKPT_SIGTYPE returns the last
signal that was sent to the process.
Most likely, this will be the same signal
that caused a recovery (depending on
how the signal handler was
implemented).
Type = CKPT_NUMCHKPTS returns
the number of checkpoints (tsetjmp())
that have been set by the process.

When a program starts, it can be
assumed to be in state 0. A tsetjmp()
returns the checkpoint descriptor which
we can refer to as the identifier for that
state. So, as the program keeps
jumping back and forth to various
checkpointed states -we can look at it
as a state diagram involving movement
across contexts. If the program jumps
recursively to the same state as a result
of the same signal type (jump histories
can be cached) -the programmer can
idenitfy that as a loop caused by the
same problem and have an algorithm in

A Framework for Program Recovery Using Checkpointing in UNIX
Kamal R. Prasad

Kip Macy
kamalp@acm.org

place to filter out that input. That
would be one way to build in
immunity from a denial of service
attack.

3. Experiments

The pseudo-code below shows how the
facility is used.
Void my_handler(int signum)
{
 if (signum == SIGSEGV)
 tlongjmp(0);
 else
 tlongjmp(1);
}

main()
{
 signal(SIGSEGV, my_handler);
 if (tsetjmp() <0)
 perror(”tsetjmp”);
 printf(“do you want to corrupt the
program\n”);
 if (getchar()\\'y')
 /* perform an operation that
causes segmentation fault */
 /* continue program execution */
}

Saving and restoring the program state
for a modular program is staright
forward. We have put in place code to
ensure that program can re-use pipes
after a longjmp(). It should be possible
to use sockets and many other types of
descriptors because their state is not
affected by userspace corruption. A
sample code to recover from a problem
in processing network information would
be as follows:-

if (tsetjmp() <0)
 perror(“tsetjmp”);
while (len = read(sockfd, buff, 1024))

 buff+= len;
We are in the process of making this
framework a part of commonly used
programs.

4. Future work

The present mechanism is rather inefficient
that it does not do a diff between checkpoint
states to reduce the amount of information
being saved. Further, it does not perform
any compression to reduce filesystem
usage. Putting in these optimizations can
help reduce overhead associated with
checkpointing. The current implementation
goes through the filesystem to serialize the
core to disk. But in case of an embedded,
diskless device like a networking router -this
results in a lot of overhead as the data is
being saved to a ramdisk. It is possible to
shunt out the vnodes associated with the
process image and that will speed up
checkpointing in a system that is usually
strapped of computing power. The process
image once saved could be combined with
a migration mechanism to be moved to
another processor in a NUMA architecture
-which has access to the corefile via NFS.
This in turn can help in load balancing on a
rack mounted cluster of workstations.

References

[1]. Jim Plank, Micah Beck, Gerry Kingsley,
Kai Li, Libckpt: Transparent Checkpointing
under Unix, USENIX Winter 1995 Technical
Conference
[2]. M. Litzkow and M. Solomon, Supporting
Checkpointing and Process Migration
outside the UNIX kernel, In Conference
Proceedings, USENIX Winter 1992
[3]. W. Richard Stevens, Advanced
Programming in the UNIX Environment,
Addison Wesley Reading, Mass 1992
[4]. Marshall Kirk McKusick, The Design
and Implementation of FreeBSD 4.4.,

Addison Wesley
[5]. E. N. Elnozahy, D.B. Johnson and
W. Zwaenepoel, The performance of
consistent checkpointing. In 11th
Symposium on Reliable Distributed
Systems
[6]. S.I. Feldman and C.B. Brown Igor: A
system for program debugging via
reversible execution: ACM Workshop
Notices, Workshop on Parallel and
Distributed Debugging.

