
89

82

78

1

2

Back to the basics

1 Introduction
When Mikael told me that there were enhanced lectures by Don Knuth, pushed on-
line at Stanford, I decided to have a look at it.1 We’re talking of two series: “Advanced
TEXarcana” (1981, so between the SAIL2 and TEX82 version) and “The Internal Details
of TEX82” (during early TEX82 development). After all, it’s a nice distraction when one
is supposed to be in documentation mode. It is also a good retrospective on the period
around the 80’s when TEX was actively developed, tested on real documents, and when
more people became interested in using it, evolved. So I sat down (or walked around),
listened, and took some notes.3

When watching these videos one has to keep in mind that the version of TEX and its
default format plain TEX were not yet finalized, even if there’s mentioning of the books
being released any time (next year). Rather soon one starts to notice that there are
references to primitives and macros that predate the standard TEX engine and plain
format. For instance instead of ‘plain’ there is ‘basic’. Some examples and concepts
assume a different TEX than one knows today and it’s interesting to where all we know
and use now came from. These lectures are part of the development cycle of many
years and also a clear demonstration of how software development took place: in an
academic setting without commercial pressure. With user feedback, discussions, and
no problems going back to the drawing board. It all resulted in TEX as we know it
today, and although there have been extensions (enhancements) the principles remain
the same.4

Before we continue, let’s guess about the timeline here; please correct me if I’m wrong.

• In the late 70’s Don Knuth started working on what became TEX. The reasons for this
(quality) are explained in various places but of course making sure that his books
look great was the main objective.

• The program was written in SAIL, running on a Digital Equipment infrastructure,
but later Pascal was used. There are references to other hardware setups (at other
universities) and in one talk SUN workstations are mentioned which illustrates the
move from terminals to more integrated high resolution setups.

1 He got the link to the upgraded videos from Barbara Beeton who was present at one or more of these
lectures.

2 SAIL refers to the “Stanford Artificial Intelligende Laboratory”, and references to this acronym refer to
the mainframe at that place and its operating system variant. On Wikipedia search for WAITS as it also
refers to early days media usage.

3 This wrapup is part of the musing series but rendered independently because of its length.
4 The Lua project has a similar vibe which is among the reasons that we’ve chosen it as the extension

language for LuaTEX.

3

• The program was of course initially meant for producing books, and with that in
mind it started out as a production tool. Much was hard-coded but some was imple­
mented in a macro package called ‘basic’. In these years we see the language evolve
to be more flexible: there came additional programming related features and hard
coded assumptions became configurable.

• At some point a reimplementation was started, this time in Pascal, generated from
web files. A more detailed documentation of how things work conceptually are part
of the process and stepwise building up the program paradigm. The mature web
suite is part of the outcomes of the TEX and MetaFont project.5

• The arcana presentations took place around that time, so they cover the prototype(s)
as well as the early TEX82 versions. Between 1983 and 1989 TEX became more and
more stable and eventually it was declared finished and frozen, except for bugs pe­
riodically being fixed.

• Then TEX82 started being used and a period of development, documentation and
experimenting started. Various students were involved in subsystems.

• The presentations about the internal details happen in the middle of this evolu­
tion, or maybe a better term is transition. There is still talk of a basic format, some
primitives will later change, the book we mention here dates from that time, the
books mentioned being written are the multi-column set about TEX, MetaFont and
the fonts.6

• From 1982 to 1989 the versions evolve and in the tape dumps of the by then retired
SAIL machines we see less and less changes. We also see macro packages pop up
and evolve. The fonts mature as well.

The above is more or less noticeable in the presentations. For instance, the many refer­
ences to “loading basic” made me curious to what this prehistoric TEX format actually
looked like, if only to figure out what references to \jpar actually mean (given the con­
text one can guess here). The macros, actually a relative small set compared to plain,
and tiny compared to for instance ConTEXt MkXL, can be found in “TEX and MetaFont,
New Directions in Typesetting”, published by the now defunct Digital Equipment, the
company that made the main frame and mini computers that TEX was developed on
and that also are mentioned (and used) in the presentations.

Watching all that comes with some nostalgic feelings, because I grew up with those
machines too (DEC 10 and 20, as well as VAX), did quite a bit of Pascal and Modula2
programming, used the line printers, slow tube terminals, went from 300 to 1200 baud

5 Because Pascal became less popular and was not available on all platforms, at least not in compatible
ways, Knuth later switched to C and therefore cweb. The web2c conversion introduced later converts
Pascal code into C which then compiles into the programs distributed in for instance TEXLive.

6 This first book, discussing digital typography, basic TEX and infant MetaFont, has header lines wrapped
in a frame. In those days it was actually quite common (in educational documents) to put rules around
things, maybe just because it could be done. It might have been a left-over from the typewriter days
when little was possible and with upcoming systems suddenly one could draw rules. The later TEXbook
series looks way better! But still, quite often extensively framed tables show up in documents produced
by TEX. Maybe because the core TEX engine is pretty much limited to glyphs and rules out of the box.

4

modems, and even played with these GIGI terminals. Being totally unaware of some­
thing TEX running on these machines I even wrote some programs that made pages
from ascii input, including generating tables of contents, doing some itemization, move
around some space for glued in images, and page numbering.

So, a lot of bells ring when seeing the black and white videos, filmed just before color
video entered academia, eventually to be replaced by the Internet. And yes, the first
personal computers also showed up, but again, no TEX. Anyways, looking back it is
amazing that something TEX took off so well, especially given what users nowadays take
for granted with respect to performance, editing and previewing, and are sometimes
willing to complain about.

But, let’s move beyond the sentimental reflections and have a look at this basic format
because that kind of pictures the landscape. This is not a tutorial so no details will be
explained but I’ll revive some of what can be read in this first TEX manual because it’s
not something you can pick up in a bookshop. The book actually is a nice read, with
plenty of humor sprinkled in.

2 Some observations
We will use the basic format to explain a bit what this first version was about but before
we come to that it might be fun to filter out some distinctive differences with today’s
TEX. Let’s start with a quote:7

“Those of you who wish to define control sequences should know that TEX has
further rules about them, namely that many different spellings of the same con­
trol sequence may be possible. This fact allows TEX to handle control sequences
quite efficiently; and TEX’s usefulness is not seriously affected, because new con­
trol sequences aren’t needed very often. A control sequence of the first kind
(i.e., one consisting of letters only) may involve both upper case and lower case
letters, but the distinction between cases is ignored after the first letter. Thus
\TEX could also be typed “\TEx” or “\TeX” or “\Tex” — these four have the same
meaning and the same effect. But “\tex” would not be the same, because there is
a case distinction on the first letter. (Typing “\gamma” results in γ, but “\Gamma”
or “\GAMMA” results in Γ.)”

In one presentation Knuth explains that Pascal has some limitations on the length of an
identifier: eight, and therefore he played safe by limiting them to seven unique initial
characters in his code. Maybe that inspired him to come up with the feature mentioned
here. The question is why it was done this way. I assume that efficiency here refers to
hashing and resolving control sequences because normalizing takes runtime too. Once
stored in the format (or memory) the control sequence is a token and therefore just
a number, so any length or case property is gone. It is one of the reasons why TEX is

7 There is a list of named characters in the manual but they are not defined in the basic format, so I guess
that there is an extra file that defines them.

5

fast and efficient! However, keep in mind that tokens as concept were not in the first
implementation, there it was about sequences of characters (which then is slower).

But more interesting is the assumption that not that many new control sequences are
needed. Tell that to a 2025 TEX user or macro package writer: it just wouldn’t work out
today. Of course this became clear pretty soon so this feature was dropped in the follow
up. It was mentioned in a dangerous bend section that when a reader dared reading
that, lead to a next bend:

“Another rule takes over when there are seven or more letters after the escape:
all letters after the seventh are replaced by “x”, and then groups of eight letters
are removed if necessary until at most 14 letters are left. Thus \underline is the
same as \underlixx; and it is also the same as \underlinedsymbols or any other
control sequence that starts with \u followed by n or N, then d or D, then e or
E, then r or R, then l or L, then i or I, then 2 or 10 or 18 or 26 or ⋯ letters. But
\underline is not the same as \underlines, because these two control sequences
don’t have the same length modulo 8.”

I’m sure you “get this” in one read, but try to explain that to a confused user who
defined a ton of macros after having managed to bump TEX’s memory to the extremes
of those days.8 But, as usual, Don’s wit kicks in when he makes us go into the next
dangerous bend:

“ . . . Thus the total number of distinct control sequences available is exactly

128 + 52 • 26 + 52 • 262 + 52 • 263 + 52 • 264 + 52 • 265 + 8 • 52 • 266 =

129151507704

that should be enough . . . ”

In the web file we can read this (and best keep this in mind when we progress in this
wrap-up):

“The present implementation has a long ancestry, beginning in the summer of 1977,
when Michael F. Plass and Frank M. Liang designed and coded a prototype
based on some specifications that the author had made in May of that year. This
original protoTEX included macro definitions and elementary manipulations on
boxes and glue, but it did not have line-breaking, page-breaking, mathematical
formulas, alignment routines, error recovery, or the present semantic nest; fur­
thermore, it used character lists instead of token lists, so that a control sequence
like \halign was represented by a list of seven characters.”

Watch the fact that there was no token list (as we know it now) yet but a sequence of
characters. So storing a macro name was costly. Of course a list of records with two

8 Just imagine explaining \big, \Big, \bigg and \Bigg versus the impossible \Big, \BIg and \BIG when
only the first capital is distinctive.

6

numbers (the token and the pointer to the next token) also takes space. This might be
the reason why we have the collapsing of names mentioned above: it had to fit into
memory (and format files, which are kind of memory dumps) efficient.

“A complete version of TEX was designed and coded by the author in late 1977 and
early 1978; that program, like its prototype, was written in the SAIL language, for
which an excellent debugging system was available. Preliminary plans to con­
vert the SAIL code into a form somewhat like the present “web” were developed
by Luis Trabb Pardo and the author at the beginning of 1979, and a complete
implementation was created by Ignacio A. Zabala in 1979 and 1980.”

It’s here the transition from basic to plain happened. The old book discusses the basic
format, but the final TEX reference talks plain.

“The TEX82 program, which was written by the author during the latter part of
1981 and the early part of 1982, also incorporates ideas from the 1979 implemen­
tation of TEX in MESA that was written by Leonidas Guibas, Robert Sedgewick,
and Douglas Wyatt at the Xerox Palo Alto Research Center. Several hundred re­
finements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been
substantially improved. After the appearance of “Version 0” in September 1982,
this program benefited greatly from the comments of many other people, no­
tably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to
hyphenate words from different languages, based on some ideas of Michael J.
Ferguson.”

By 1989 the program was pretty stable, and we see little changes in for instance plain TEX
in the archives. When listening to the talks, especially from session 9 onward, where
files are discussed, you will notice that on the one hand there is this 127 characters
‘limitation’ imposed, very likely a side effect of the Computer Modern fonts having at
most that many glyphs, although on the other hand the tfm and dvi formats are capable
of more. So, going 256 was no big deal here, and it’s the European user groups that took
the opportunity to use the extended repertoire for enhanced versions of the fonts, which
in turn resulted in different encoding schemes, that itself in turn had consequences for
e.g. hyphenation patterns.

Another interesting remark in the book is the following.

“When a space comes after a control sequence (of either kind), it is ignored by
TEX; i.e., it is not considered to be a ‘real’ space belonging to the manuscript
being typeset. Thus, the example above could have been typed as George P\'
olya and Gabor Szeg\" o. TEX will treat both examples the same way; it always
discards spaces after control sequences.”

This is something that changed over time, these hundreds of refinements, which shows
that this multi-year project was driven by perfection, user feedback and practical think­
ing. A simple example shows what happens today:

7

\def\`{!} \` \` \`
\def\f{!} \f \f \f

It will give you: ! ! ! !!!, so the explanation in the book (and presentations) of how
spaces are handled when a control sequence is read nowadays adapts to the assigned
catcodes. You have to keep in mind that a control sequence normally was only made
from letters, the single character ones that use a non-letter were primitives.

This quote definitely demonstrates how the constraints of those days were dealt with,
and just as watching an old SciFi movie with tubes as displays makes one wonder why
if flat panels were not predicted, it’s clear that foreseeing computers to become 1000 or
more times faster and memory going gigabytes was not easy.

“When you do use the \: instruction to change fonts, here are the rules you need
to know. TEX can handle up to 32 different fonts in any particular job (counting
different sizes of the same style). These 32 fonts are distinguished by the least
significant five bits of the 7-bit ascii character code you type following “\:”; if
you don’t understand what this means, use the following code names for your
fonts: table omitted. You never refer to a font by its number, always by its code.
Code A is treated the same as a, etc.; but a wise typist will consistently use the
same codes in any particular manuscript, because later TEXs may allow more
than 32 fonts.”

Indeed, today’s TEX implementations go way over 32 fonts, use multi-byte names, ship
macro packages that provide complex font setups, and what more. This of course al­
ready had changed in the final version of TEX.

“Groups within groups will happen only in rather complicated situations, but in
such cases it is extremely important that you don’t leave out a { or } lest TEX gets
hopelessly confused.”

It is these (dangerous bend) comments that makes reading this old document worth­
while! Although nesting groups 300 deep is not something that happens often, but
processing this document in ConTEXt brings us up to 11 levels, while for instance the
LuaMetaTEX manual tops at 25. Maybe in the end macro packages indeed became too
complex.

The way a horizontal list becomes a paragraph of lines remained conceptually mostly
the same. The formulas changed a bit and some more features were added. In a way
this is also how macro packages later evolved: driven by demand. In one presenta­
tion, when explaining some exercises and answering questions, Knuth mentions that
solutions to problems can interfere with each other in a larger setup and indeed this is
where writing a large macro package puts some stress on the authors: integration. The
par builder is an example of where (maybe conflicting) demands meet as we found out
when we extended the builder in LuaMetaTEX. We felt better after hearing him express
in one talk that some parts of the par builder took some iterations to become perfect
and that the first prototype version had a (what could be considered) a bug that no

8

one had noticed as on the average the results were fine (so today one would just say it
was a feature later to be improved). It’s no surprise that when we extended the code
we had to do some hard thinking. There’s a reason why the original (reference) source
has some warnings against changes.

The first version of TEX already had the basic algorithms but more was hard coded.
There is a \tolerance like parameter but as far as I can see no \pretolerance and \emer­
gencystretch but there are a few integer parameters that drive the process. Justifica­
tion is basically limited to flush right with a parameter that determines the raggedness.
There are no \leftskip and \rightskip yet and likely for a good reason: typesetting
books is the target. He demonstrates that by messing around with glue in special ways
one can achieve left and right ragged effects. In one talk Knuth answers a question
about stretch between characters in a word with the remark that this is not what typo­
graphers want. If you look at pdfTEX or macro packages on top of LuaTEX you might
encounter additional inter-character kerning, something that sometimes makes sense
in titling, but so far the urge to add inter-character glue had been suppressed.9

An interesting difference with final TEX is that spaces after the right brace that ends the
body of a definition (\def) are ignored. That for sure got rid of what we call spurious
spaces but the final TEX is more consistent in no longer doing that. I think that dealing
with spaces and line endings has always been somewhat tricky so it is no wonder this
evolved.

There are of course dimensions, and they have the usual units. However, there is no ex
yet, nor sp. The mentioned repertoire is: pt, pc, in, cm, mm, dd and em. Do you see what
more is missing?10 At the start there were no dimension registers, only some counters,
but when registers showed up it also came with some changes in primitives that expect
dimensions.

Space factors are discussed in a way that suggests that they are hard coded which is
likely due to the fact that the focus is on Latin scripts with well known punctuation
code points. Later that became configurable but the approach remained the same.

In fact quite a bit is still hard coded like the way hyphenation hooks into the par builder.
However, in appendix H the book suggests that there are built-in rules while the web
file shows the ability to load pattern files efficiently. So here we are in some middle
ground between old and new I guess; both identify themselves in the web files as TEX82
anyway.11

A substantial bit of the book and talks is about error message and interacting with the
system, which is understandable given the systems used at that time. We have ConTEXt

9 Implementing this is actually rather easy but as it won’t get used it only adds overhead and we don’t feel
the need to prove that it can be done.

10 There are in places references to sp so it must have been there at some point.
11 When you look at (or listen to) the way hyphenation patterns are made and applied, and when you

realize that we’re at the Artificial Intelligence lab, you can actually consider this to be an an example of
machine learning. After all we have lookups driven by weights stored in a compact form.

9

configured to just quit at an error, report the location, and users can then fix the issue
and run again. Hitting a button in the editor triggering a few seconds run makes more
sense. But I do remember the times when it was better to note down the issue and hit
return to see if TEX could catch up.12

Actually, one nowadays needs ways to inform the user about issues because reading the
‘transcript’ is often not done. In this context it was interesting to hear on one presenta­
tion Don mentioning that a .tex file produces a .dvi and .err file. I made a mental note
to mention this ‘interesting’ and somewhat depressing suffix here, but then was amused
by the fact that in a next presentation that had become .log because of user feedback.
Today the problem is that the (progress, diagnostic, warning) messages scroll by so fast
that users probably don’t notice them. Do they go to the log file?13

I tried to locate where the single character primitives were defined and ended up at the
interesting section that describes the magic look up trickery of inter-math element spac­
ing. As the comments mention \thinmskip (later to become \thinmuskip) and such, it
looks like the shortcuts are already gone, although \quad is still hard coded. So that
manual predates the web version that has the comment “TEX version 0.25 as it existed
when I gave twelve lectures on the internal details of TEX82 in July 1982”, the videos
that is. Although ‘basic’ still fits the talks, and that is what Knuth refers to, progress
was made real time in 1982!

3 The basic format
One thing that you will notice, also in the presentations, is that in addition to ascii,
which is mentioned explicitly, Don loved to use some special symbols, like ← for an
assignment instead of an =. In plain TEX that is gone although the file starts with some
mappings of Don’s favorite keyboard, using the pre-space range of characters. Watch
the use of octal here:

\chcode'173←1 \chcode'176←2 \chcode'44←3 \chcode'26←4
\chcode'45←5 \chcode'43←6 \chcode'136←7 \chcode 1←8

The comment sign is the same so we need a macro to typeset it:

\def\%{\char'45 } % Note, the space after 45 is needed! (e.g.\%0)

Commands often have short names although nowadays one will not see these:

12 In this perspective I like to notice that when we moved from pdfTEX to LuaTEX (and later LuaMetaTEX)
processing the MetaFun manual with thousands of graphics, color, etc. went down from 15 minutes to
below 20 seconds. Compiling a 250 page book from xml input (also combined with multiple MetaPost
graphics per page) that could take 4 runs and accumulated to 45 minutes, went below a minute. Type­
setting a 300 page complex educational math book with some three thousand formulas takes 6 seconds
on a 2025 Chromebook. Nowadays processing the TEX book takes less than a second so imagine what it
took in those days. It anyway demonstrates that the efficient original implementation still pays off.

13 It is why in ConTEXt we explore the possibilities to visual feedback via a connected device.

10

\def\lft#1{#1\hfill}
\def\ctr#1{\hfill#1\hfill}
\def\rt#1{\hfill#1}

Here we see a feature not present in TEX, the size keyword, which stands for the cur­
rent horizontal size. Another interesting observation is the extreme value of 1000cm,
something not possible today. But at least it’s metric.

\def\rjustline#1{\hbox to size{ % newline therefore space
\hskip0pt plus1000cm minus1000cm #1}}

\def\ctrline#1<\hbox to size{\hskip0pt plus1000cm minus100Ocm
#1\hskip0pt plus100Ocm minus100Ocm}}

There is not yet a repertoire of \tracing... parameters but a single reference to an inter­
nal parameter zero. In one talk you see an (octal) value assigned to it, we’re talking bits
and bytes here. The first integer variable reflects the tolerance and number eight does
something with raggedness. An example in the book uses a value of 1000 as example
but we can’t test what that does.

\def\trace{\chpar0←} \def\jpar{\chpar1←} \def\ragged{\chpar8←}

although we won’t go into much detail, it is nice to know how it all started out. The
‘tolerance’ is set by a multiplier:

“The number 200 used to determine feasibility can be changed to 100𝑛 for any
integer 𝑛 > 1 by typing “\jpar <number>”, where 𝑛 is the specified number. A
large value of 𝑛 will cause TEX to run more slowly, but it makes more line breaks
feasible in cases where lines are so narrow that 𝑛 = 2 finds no solutions.”

Watch how we can make a paragraph more ragged by changing a parameter:

“The instruction \ragged <number> specifies a degree of “raggedness” for the right-
hand margins. If this number is 𝑟, the line width changes towards its natural
width by the ratio 𝑟/(100 − 𝑟). Thus, \ragged 0 (the normal setting) gives
no raggedness; \ragged 100 causes the width of each line to be midway be­
tween \hsize and its natural width; and \ragged 1000000 almost completely
suppresses any stretching or shrinking of the glue. Some people like to use this
“ragged right margin” feature in order to make the output look less formal, as
if it hadn’t actually been typeset by an inhuman computer. (Some people also
think that “ragged right” typesetting saves money. On traditional typesetting
equipment, this was true, but computer typesetting has changed the situation
completely: the most expensive part of the computation is now the breaking of
lines, while the setting of glue costs almost nothing.)”

Currently this is done by a combination of tolerance and left and/or right skips, in upto
three passes (in LuaMetaTEX we can specify a sequence of passes so that can be seen as
a ‘many years later’ follow up then).

11

Of course there are some math definitions, watch the way characters are defined: by
value. The \limitsswitch is what later became \limits.

\def\log{\mathop{\char'154\char'157\char'147}\limitswitch}
\def\lg{\mathop{\char'154\char'147}\limitswitch}
\def\ln{\mathop{\char'154\char'156}\limitswitch}
\def\lim{\mathop{\char'154\char'151\char'155}}
\def\limsup{\mathop{\char'154\char'151\char'155

\,\char'163\char'165\char'160}}
\def\liminf{\mathop{\char'154\char'151\char'155

\,\char'151\char'156\char'146}}
\def\sin{\mathop{\char'163\char'151\char'156}\limitswitch}
\def\cos{\mathop{\char'143\char'157\char'163}\limitswitch}
\def\tan{\mathop{\char'164\char-141\char'156}\limitswitch}
\def\cot{\mathop{\char'143\char'157\char'164}\limitswitch}
\def\sec{\mathop{\char'163\char'145\char'143}\limitswitch}
\def\csc{\mathop{\char'143\char'163\char'143}\limitswitch}
\def\max{\mathop{\char'155\char'141\char'170}}
\def\min{\mathop{\char'155\char'151\char'156}}
\def\sup{\mathop{\char'163\char'165\char'160}}
\def\inf{\mathop{\char'151\char'156\char'146}}
\def\det<\mathop{\char'144\char'145\char'164}}
\def\exp{\mathop{\char'145\char'170\char'160}\limitswitch}
\def\Pr{\mathop{\char'120\char'162}}
\def\gcd{\mathop{\char'147\char'143\char'144}}
\def\choose{\comb()}
\def\leftset{\mathopen{\{\,}}
\def\rightset{\mathclose{\,\}}}
\def\modop{\<\,\mathbin{\char'155\char'157\char'144>\penalty900\<\,}
\def\mod#1{\penalty0\;(\char'155\char'157\char'144\,\,#1)}
\def\eqv{\mathrel\char'421 }
\def\neqv{\mathrel{\not\eqv}}

I think that talking in octal was quite popular in those days, just like hexadecimal is in
our times. In later versions of basic we see this:

\def\sin{\mathop{\char s\char i\char n}\limitswitch}

In plain we eventually got to this:14

\def\sin{\mathop{\rm sin}\nolimits}

This definitions calls for \quad which is not defined, so it’s still a primitive.

14 In LuaMetaTEX we have more built-in classes and one can add even more, so there we use a dedicated
function class so that we can tune spacing better. So there is a different way to define functions, also
because we can set more properties.

12

\def\qquad{\quad\quad}

The \≥ is likely some spacing directive and uses a symbol that even today is not on
keyboards:

\def\ldots{{.\≥.\≥.}}
\def\cdots{{\char'401\≥\char'401\≥\char'401}}
\def\ldotss{{.\≥.\≥.\≥}}
\def\cdotss{\cdots\≥}
\def\ldotsm{{\≥.\≥.\≥.\≥}}
\def\vdots{\vbox{\baselineskip 4pt\vskip 6pt

\hbox{.}\hbox{.}\hbox{.}}}

These definitions, related to alignments, are not that different from what they later be­
came. Again we have rather large plus and minus values. The short \dispstyle later
became more verbose, so it is not a typo. Does anyone today use these pile commands,
a two-line helper (meant for splitting a long math line in display mode), chops and/or
sposes? The \spose definitely is invalid on later TEX engines as they have put a limit on
the size of dimensions.

The \! is a hard coded primitive that basically ends a line without adding a space. To
quote the manual:

“First, a (carriage-return) always counts as a space, even when it follows a hy­
phen. If you want to end a line with a (carriage-return) but no space, you can
do this by typing the control sequence “\!” just before the (carriage-return).”

In various places the complications of spacing in the input is discussed and even to­
day this is something to pay attention to. The \! is one of the primitives, the future
\ignorespaces.

\def\eqalign#1{\vcenter{\halign{\hfill$\dispstyle{##}$\!
⨂$\dispstyle{\null##}$\hfill\cr#1}}}

\def\eqalignno#1{\vbox{\tabskip0pt plus1000pt minus100Opt
\halign to size{\hfill$\dispstyle{##}$\tabskip 0pt

⨂$\dispstyle{\null##}$\hfill
\tabskip0pt plus1000pt minus100Opt
⨂$\hfill##$\tabskip 0pt\cr#1}}}

\def\cpile#1{\vcenter{\halign{$\hfill##\hfill$\cr#1}}}
\def\lpile#1{\vcenter{\halign{$##\hfill$\cr#1}}}
\def\rpile#1{\vcenter{\halign{$\hfill##$\cr#1}}}
\def\null{\hbox{}}
\def\twoline#1#2#3{\halign{\hbox to size{##}\cr$\quad\dispstyle

{#1}$\hfill\cr\noalign{\penalty1000\vskip#2}
\hfill$\dispstyle{#3}\quad$\cr}}

\def\chop to#1pt#2{\hbox{\lower#1pt\null\vbox{\hbox{\lower99pt
\hbox{\raise99pt\hbox{$\dispstyle{#2}$}}}\vskip-99pt}}}

13

\def\spose#l{\hbox to 0pt{#1\hskip0pt minus10000000pt}}

We now arrive at fonts. Given memory constraints the number of fonts that can be
used is small. The names start with \: and the reference is a character. These are the
precursors of computer modern with predefined sizes, no scaling.

\:@←cmathx
\:a←mr10 \:d←mr7 \:f←mr5
\:g←mi10 \:j←mi7 \:l←mi5
\:n←ms10
\:q←mb10
\:u←msy10 \:x←msy7 \:z←msy5
\:?←mti10

In later versions of the basic file (dating from after the book) we see that ac has been
being prepended to the font names. The 10 → 7 → 5 steps didn’t change over time.
These are familiar shortcuts and we kept them in ConTEXt, although with a different
macro body:

\def\rm{\:a} \def\sl{\:n} \def\bf{\:q} \def\it{\:?}

There are a few names here that were replaced: \topbaseline became \topskip and the
three display skips became four more verbose ones.

\parindent 20pt \maxdepth 2pt \topbaseline 10pt
\parskip 0pt plus 1 pt \baselineskip 12pt \lineskip 1pt
\dispskip 12pt plus 3pt minus 9pt
\dispaskip 0pt plus 3pt \dispbskip 7pt plus 3pt minus 4pt

Here we see a font switch to an extensible font:

\def\biglp{\mathopen{\vcenter{\hbox{\:@\char'0}}}}
\def\bigrp{\mathclose{\vcenter{\hbox{\:@\char'1}}}}
\def\bigglp{\mathopen{\vcenter{\hbox{\:@\char'22}}}}
\def\biggrp{\mathclose{\vcenter{\hbox{\:@\char'23}}}}
\def\biggglp{\mathopen{\vcenter<\hbox<\:@\char'40}}}}}
\def\bigggrp{\mathclose{\vcenter{\hbox{\:@\char'41}}}}

Without reading documentation one can guess what this does: we set the three families:

\mathrm adf \mathit gj1 \mathsy uxz \mathex @

Eventually TEX got the \textfont (and script) definition primitives which gave macro
packages the opportunity to use these as macro names.

We’re nearly done, here is the basic output routine. It assumes a meaningful \page. A
page gets the top inserts, followed by the skip, then the content, then the other skip and
finally the bottom inserts. Of course that became different in TEX86 when we got a more
generalized approach to inserts.

14

The baseline skip is quite extreme here, as if it’s meant for proofing. Also watch the
page counter: the \count command is not what we’re accustomed to: it expands, like
\the\count and \number\count do today. Some videos refer to \the so when you watch
them and hear a reference to ‘sail’ or an older TEX, we’re talking this one, otherwise a
successor. The \setcount does the assignment.

\output{\baselineskip20pt\page\ctrline'{\:a\count0}\advcount0}

\setcount0 1

Well, why not end the basic file with:

\rm
\null\vskip-12pt % allow glue at top of first page

This format is small and for a real book more is needed. The assumption was that there
is only a very basic setup with then an additional book specific style. One could also
copy basic and use a patched version. But because those involved were programmers,
or at least aware of what computers could mean for them, it is no surprise that larger
macro packages started showing up. When looking in more detail at what is provided,
in the next sections we will see that some parameters that went away, others came along,
and a couple of concepts changed. That made writing more general purpose macro
packages easier.

4 Sail
The first version was written in SAIL, and when we fetch the sources from Don Knuths
website we can identify what become primitives and how they are grouped. Contrary
to the next sections, where we can parse the .web files for primitive and use that as
trigger for (runtime) filtering, here we show some more manually filtered sections. If
you’re not familiar with how TEX is coded, you have to take what is said below for
granted and just try to get the idea. Seeing the variables and definitions involved can
give an impression of how it all relates to for instance primitives and functionality that
you run into.

In TEX we need to distinguish primitives and the way that is done is by relating them
with two numbers: cmd and chr. The first 12 commands are single character commands.
For instance a backslash chr is an escape cmd. When \something is encountered in the
source, normally the backslash will trigger reading letters and when done lookup the
name assembled from them. Unless one made an error, that name (it could be a primi­
tive or user defined macro) is looked up and resolved to a cmd and chr where the latter
can be a number representing a value or a pointer to a token list. We will not go into
details here.

An interesting revelation in the presentations is that when you start up TEX in interac­
tion mode, and no escape character has been setup, the first character entered will be

15

defined as such, something that of course gets unnoticed when you start with a com­
mand, because then the backslash becomes the escape character.

escape 0 # escape delimiter (\ in TEX manual);
lbrace 1 # begin block symbol ({);
rbrace 2 # end block symbol (});
mathbr 3 # math break ($);
tabmrk 4 # tab mark ();
carret 5 # carriage return and comment mark (%);
comment carret is also used as the command code for \cr;
macprm 6 # macro parameter (#);
supmrk 7 # superscript (^);
submrk 8 # subscript (↓);
ignore 9 # chars to ignore;
spacer 10 # chars treated as blank space;
letter 11 # chars treated as letters;
otherchar 12 # none of the above character types;

These were basically what later became catcode categories, here we have 12, a modern
TEX has 16. It might be a bit out of place, but here is how ConTEXt defines these constants
in MkIX using LuaMetaTEX:15

\permanent\immutable\integerdef\escapecatcode 0
\permanent\immutable\integerdef\begingroupcatcode 1
\permanent\immutable\integerdef\endgroupcatcode 2
\permanent\immutable\integerdef\mathshiftcatcode 3
\permanent\immutable\integerdef\alignmentcatcode 4
\permanent\immutable\integerdef\endoflinecatcode 5
\permanent\immutable\integerdef\parametercatcode 6
\permanent\immutable\integerdef\superscriptcatcode 7
\permanent\immutable\integerdef\subscriptcatcode 8
\permanent\immutable\integerdef\ignorecatcode 9
\permanent\immutable\integerdef\spacecatcode 10
\permanent\immutable\integerdef\lettercatcode 11
\permanent\immutable\integerdef\othercatcode 12
\permanent\immutable\integerdef\activecatcode 13
\permanent\immutable\integerdef\commentcatcode 14
\permanent\immutable\integerdef\invalidcatcode 15

Watch the change in terminology: block symbol is now group, math break became math
shift, and some other minor renames. But we also got active characters, a configurable
comment and, just to complete the hexadecimal range, an ‘invalid’ category code.

15 For the record: the prefixes freezes these definitions (permanent can be overruled by changing an over­
load protection flag, the immutable property inhibits even that.)

16

We will go over the rest of the range and comment when we see something interesting
and in most cases the comment explains what we encounter.

parend 13 # end of paragraph;
match 14 # macro parameter matching;
outpar ignore # output a macro parameter;
endv 15 # end of vlist in halign or valign template;
call 16 # call a user-defined macro;

In the presentations Don frequently refers to extensions. In current TEX examples of
extensions are opening and closing files, reading and writing to them, and specials.
They are nowadays called whatsits but were always part of the game and lucky us:
they made TEX survive decades to come because it could adapt. For instance pdfTEX
uses extensions a lot, for instance for hyperlinks.16

xt 17 # extensions to basic TEX (\x)

Here we see dedicated assignment classes for glue and (indeed) reals. In later versions
we talk about (16.16) dimensions and only use ‘real’ for a field in the box that stored the
to be applied glue factor: the only officially system specific difference across platforms.

assignglue 18 # user-defined glue
font 19 # user-defined current font
assignreal 20 # user-defined length

We see that the output routine is an independent command:

def 21 # macro definition (\def,\gdef)
output 22 # output routine definition (\output)
innput 23 # required input file (\input)

There are all kind of parameters but less than we will later get. They don’t have primi­
tive names, and in the basic format we saw \jpar and \trace being defined as shortcuts
for numeric references:

setpar 24 # set TEX control parameter (\trace,\jpar)

In the presentations we also see some tracing that later changed, and debugging is men­
tioned too, although it’s seen as an emergency measure.

stop 25 # end of input (\end)
ddt 26 # emergency debugging (\ddt)

16 The original extensions didn’t really assume that for instance whatsit nodes have dimensions, because
if that were the case one has to also patch the various places where dimensions kick in, like in the par
builder. In pdfTEX (and therefore LuaTEX) some whatsits do have dimensions so there indeed some
mechanisms have to be aware of that. In LuaMetaTEX we treat whatsits as invisible because, after all, one
can wrap into a box to communicate dimensions.

17

This chartype later became catcode but what is this ascii?

ascii 27 # code for possibly untypeable character (\char)
chcode 28 # change chartype table (\chcode)

The \char primitives behave different in text and math mode and later we got a split
between \char and \mathchar. The concept of families is there:

fntfam 29 # declare font family (\mathrm,etc.)

Here we see a difference with later versions. We have an explicit set and advance prim­
itives and a serializer. In modern TEX \count got a different meaning (setter and getter
in one) and \advance got shared.

setcount 30 # set current page number (\setcount)
advcount 31 # increase current page number (\advcount)
count 32 # insert current page number (\count)

We’re sure that there have been good reasons to change \ifeven into \ifodd even when
that introduced an incompatibility, but I guess that given the pace of development, that
was the least of ones worries. The name ‘delimiter’ for \else makes me smile. Watch
how we have two conditional command classes. There are no \iftrue and \iffalse so
here is a state check example given:

\def\firsttime{T}
... \if T \firsttime{\gdef\firstime{F}}\else{...}\fi ...

The braces are mandate and also prevent look-ahead expansion as they end the test. I
couldn’t find \ifT, sorry.

ifeven 33 # conditional on count even (\ifeven)
ifT 34 # conditional on character T (\ifT)
elsecode 35 # delimiter for conditionals (\else)

We still have a split between setter and getter but instead of \save we now use \setbox;
we also can make copies. It is worth noticing that we have a \shipout called \page and
dedicates justification commands (\hbox and \vbox):

box 36 # saved box (\box,\page) or justification (\hjust,\vjust)
hmove 37 # horizontal motion of box (\moveleft,\moveright)
vmove 38 # vertical motion of box (\raise,\lower)
save 39 # save a box (\save)

So these were always available:

leaders 40 # define leaders (\leaders)

These are also familiar:

halign 41 # horizontal table alignment (\halign)

18

valign 42 # vertical table alignment (\valign)
noalign 43 # insertion into halign or valign (\noalign)
vskip 44 # vertical glue (\vskip,\vfill)
hskip 45 # horizontal glue (\hskip,\hfill)
vrule 46 # vertical rule (\vrule)
hrule 47 # horizontal rule (\hrule)

However, inserts were hard coded. I think that in these days graphics were still glued
in so basically only footnotes were in demand.

topbotins 48 # inserted vlist (\topinsert or \botinsert)

In the book style example in the basic TEXbook we see this definition:

\def\footnote#1#2{\botinsert{\hrule width5pc \vskip3pt
\baselineskip9pt\hbox par size{\eightpoint#1#2}}}

So we use the bottom insert, which eventually will be separated by a \botskip and it
will have a rule on top (question: what will happen with multiple notes? We didn’t
mention specifying boxes yet but here is the possible syntax:

\hbox {} \hbox to size {} \hbox to <dimen> {} \hbox expand <dimen> {}
\hbox par size {} \hbox par <dimen> {}
\vbox {} \vbox to size {} \vbox to <dimen> {} \vbox expand <dimen> {}

This par is used in the footnote definition, we basically get a \vbox disguised as \hbox.
Later these box definitions became:

\hbox {} \hbox to <dimen> {} \hbox spread <dimen> {}
\vbox {} \vbox to <dimen> {} \vbox spread <dimen> {}

At that point we also got \vsplit, multiple inserts, inserts that could be split over pages,
properties like skips bound to inserts, etc.

The, also migrating, marks look familiar and two command categories are used. Here
\firstmark is not mentioned:

topbotmark 49 # insert mark (\topmark,\botmark)
mark 50 # define a mark (\mark)

For sure we have:

penalty 51 # specify badness of break (\penalty)

And:

noindent 52 # begin nonindented paragraph (\noindent)

Eh . . . we now have triggers like \outputpenalty and the concept of push back in the
output routine. The old TEX engine has an explicit \eject that can be invoked in hori­
zontal mode (middle of a paragraph) or vertical mode. In new TEX this became a plain

19

macro. Another interesting primitive is \page that inserts the collected content, box
number 255 in new TEX.

eject 53 # eject page here (\eject)

The next command deals with the hyphen related primitives. The * primitive is for
math where it will insert a × with a possible line break after it. This is an interesting
observation: this native feature was removed in the final version of TEX, but at some
point in LuaMetaTEX discretionaries came back, for repeated operators (at the end of a
line and the start of a next line) as well as specific (three part) breakpoints.

discr 54 # discretionary hyphen (\-,*)

Interesting, as later we only had an accent placement, seldom seen in the running text,
possibly used in macros, if at all, because at some point TEX went eight bit.

accent 55 # attach accent to character (\+)
newaccent 56 # define nonstandard accent (\accent)

Only one side of the (centered) equation is covered:

eqno 57 # insert equation number (\eqno)

Hm, apart from that space, we don’t have it like this any longer:

mathonly 58 # character or token allowed in mathmode only
exspace 59 # explicit space (\)
nonmathletter 60 # letter except in mmode

In modern TEX these became fences:

leftright 61 # variable delimiter (\left, \right)
comment there is no code 62 today

These are atoms (a nucleus with a superscript or subscript):

mathinput 63 # component of math formula (\mathop,\mathbin, etc.)

We still have this modifier, a primitive that adapts the last added math atom (if it makes
sense):17

limsw 64 # modify limit conventions (\limitswitch)

Math again, but the \comb is gone. We have the \..withdelim variants now:

above 65 # numerator-denominator separator(\above,\atop,\over,\comb)

17 The node list is forward linked only in traditional TEX so this only works on what is called the tail of the
current (math) list. In LuaTEX we are dual linked so in principle one can look further back but there is
no real reason to do this. It is one of the few cases where the engine looks back anyway.

20

Watch how for instance the text style is referred as:

mathstyle 66 # style or space specification (\dispstyle,\,,etc.)

We still have that, it’s a typical TEX concept, not present in modern fonts:

italcorr 67 # italic correction (\/)

Yes, another adjust. In traditional TEX this is a math mode command, but in LuaMeta-
TEX we made it valid in text mode too.

vcenter 68 # vjust centered on axis (\vcenter)

This next command is peculiar because it is not a parameter as the other integer ones
but it has it’s own command category. There is in this list of commands no mentioning
of more advanced paragraph properties, not even \everypar because that will show up
in TEX82.

hangindent 69 # specifies hanging indentation (\hangindent)

So where is \hangafter? It actually is the reason why we have a dedicated command
class because a special scanner is needed:

\hangafter 20pt for 1
\hangafter 20pt after 2

A negative dimension hangs right, the for and after options determine the number of
lines.

Next we see some of the parameters mapped to memory. We challenge you to translate
these to modern TEX’s parameters:

define tracing = eqtb[hashsize+268] # controls diagnostics
define jpar = eqtb[hashsize+269] # controls justification
define hpen = eqtb[hashsize+270] # hyphenation penalty
define penpen = eqtb[hashsize+271] # penultimate penalty
define wpen = eqtb[hashsize+272] # widow-line penalty
define bpen = eqtb[hashsize+273] # broken-line penalty
define mbpen = eqtb[hashsize+274] # binary-op-break penalty
define mrpen = eqtb[hashsize+275] # relation-break penalty
define ragged = eqtb[hashsize+276] # raggedness

The par builder can be configured a bit but some criteria are hard coded. Watch how
we don’t have a club penalty here. The widow penalty is used for that as well as display
math.

Because skips are more than just a single integer, they are actually nodes, so here we
need to refer to node memory:

define lineskiploc = locs[0]

21

define baselineskiploc = locs[1]
define parskiploc = locs[2]
define dispskiploc = locs[3]
define topskiploc = locs[4]
define botskiploc = locs[5]
define tabskiploc = locs[6]
define dispaskiploc = locs[7]
define dispbskiploc = locs[8]

Just to show you that the math concepts are there:

define dispstyle = 0
define textstyle = 1
define scriptstyle = 2
define scriptscriptstyle = 3

Nowadays we still have these noads, intermediate nodes, here are the atoms:

define boxnoad = 0
define opnoad = 1
define binnoad = 2
define relnoad = 3
define opennoad = 4
define closenoad = 5
define punctnoad = 6

Do you recognize the fraction?

define sqrtnoad = 7
define overnoad = 8
define undernoad = 9
define accentnoad = 10
define abovenoad = 11

The square root has no degree but other roots have. Eventually Unicode engines using
OpenType math fonts got a variant that handles the degree option but here it still has
to be done manually via a macro that overlays the degree.

Nowadays we have a fence noad to which e-TEX added a middle variant (subtype):

define leftnoad = 12
define rightnoad = 13

The simple noad and style are there too but we can assume that the way the noads map
onto memory changed a bit over time (I didn’t check it).

define nodenoad = 14
define stylenoad = 15

22

These look more hard coded than in the final version of TEX, where we can define and
set glue and muglue registers.

define thinspace = 8
define thickspace = 9
define quadspace = 10
define negthinspace = 11
define negthickspace = 12
define negopspace = 13
define userspace = 14
define nospace = 6
define opspace = 7
define thspace = 15
define negthspace = 16

This was just an impression and likely one that has errors. We don’t have (access to)
many details but even if we’re wrong in aspects it is clear using this SAIL prototype
gave plenty of input to the project so when the rewrite to Pascal took place, mixed with
web documentation, these concepts evolved. Let’s now move to the next iteration but
before we do that we zoom in on the transition between the prototype and what became
the final version.

5 The intermezzo
The book has an appendix <X> titled “Recent extensions to TEX” that describes additions
to the engine done right before the mentioned book was published. These were likely
driven by usage, macro packages showing up, and users demanding more from macros
and manipulations. In the videos Knuth makes clear that TEX82 will converge to a stable
version. He announces the TEX book, the MetaFont book and a book about the fonts. He
also mentions that, while TEX underwent rather fundamental changes and upgrades,
MetaFont will be less different. But when you look at the MetaFont section in the book,
it’s hard to see the similarities. Of course I look at it from the perspective of MetaPost
being used for graphics other that glyph shapes, but if we look at the bitmap generation
bits, the language, variables, path construction, macros . . . one really has to rewrite
the older code, but most ideas behind it remain. References to built-in variables, hard
coded pens, control point features, subroutines and calls, it looks somewhat less meta
than today.

But when it comes to TEX, in a way you can recognize the upcoming TEX82 in that be­
cause when extensions like that get added, later changes are natural. So, let’s reflect a
bit on what we can read about it. Take for instance how we stepwise came to \advance.
There are ten counters and you can do the following

\setcount 4 = 10 \advcount 4 \advcount 4 \count 4

And because \count expands you get a typeset 12 here because \advcount increments
by one. In the appendix an extension is introduced:

23

\setcount 4 = 10 \advcount 4 by 2 \count 4

This comes in handy when we need to increment by 50 which otherwise would demand
a recursive loop. However, in TEX82 the \advcount got companions like \advdimen and
code was shared between, made possible by (internally) assigning a property that sig­
nals what is dealt with. But, soon an incompatible change was introduced:

\count 4 = 10 \advance\count 4 by 2 \the\count 4

From that time on each register uses the same \advance and the now unexpandable
register references have to use \the as serializer. This transition was rather natural and
made it easier to program more complex solutions.

We didn’t mention yet that the conditional primitives were also syntactically different.
It started with:

do \ifeven \count4 {this}\else{that}

so mandate braces, a mandate (redundant?) \else and no \fi. That later became:

do \ifodd \count4 this\else that\fi % if it has to be clear
do th\ifodd \count4 is\else at\fi % if you want to impress

When the appendix introduces the \ifpos test, the next example is given:

\def\neg#1{\setcount#1-\count#1}
\def\ifzero#1#2\else#3{\ifpos#1{#3}\else{\neg#1

\ifpos#1{\neg#1 #3}\else{\neg#1 #2}}}

Apart from \neg later being a math related command, this looks like a lot of work for a
test on a number being positive. It is not fully expandable (but one can wonder if that
mattered much in those early days), it negates the counter because it can only test for
positive and then has to convert the counter back to its original value. How much more
convenient will this become:

\ifnum#1>0 ... \else ... \fi % replaces \ifpos
\ifnum#1=0 ... \else ... \fi % replaces \ifzero
\ifcase#1 ... \else ... \fi % alternative

It is revealing to read about the development of (conditionals in) early TEX, in particular
regarding recent choices I made in ConTEXt when extending the repertoire. As a Lua-
MetaTEX extension \orelse is one of my favorites because it makes for less nesting of
conditionals. These types of simple constructions are the core of the language and of
immediate use as soon as a user needs to go a bit low level. As part of the soul of the
TEX language we are happy to expose our users to them.

Let’s just mention that \ifvmode, \ifhmode, \ifmmode were added as well as \line­
skiplimit and \mathsurround and more would follow.

24

Yet another extension holds some promise for the future TEX82: a user dimensions
(there are no dimen registers yet). The \varunit variable can be set to some value and
the vu dimension can then use that. In order to be able to work with the dimensions of
boxes there were also wd, ht and dp units each to be followed by some box number.

The fact that one could say 12.3vu or 2wd3 actually makes me feel less guilty for adding
the dk unit (as a demonstration of extension), the ts and es units (in order to celebrate
the fact that teenagers are willing to accompany parents to TEX conferences) and eu for
what actually is a bit like the var unit, in this case a multiplier for es, and therefore Euro­
pean thumb based (to counter the inch). But aside from these semi-serious extensions,
in LuaMetaTEX we also have installable units, so we could do this if we like to:

\newdimen\varunit \varunit 10pt
\associateunit\varunit{(`v-`a)*26+(`u-`a)}
\varunit 10pt \dimen0=10vu \the\dimen0

It happens that we already have uu as ‘user unit’ but if I’d known that there had been a
vu . . . who knows. We could discuss it at an upcoming ConTEXt meeting.

But there is another guilt diminishing feature: this box dimension unit. It demands not
just a keyword check but also picking up a number. Later we got \wd etc. that are a but
more natural in accessing these properties, but the fact that we have a kind of a sub-
expression makes that adding plenty more such specific burdens on the parser seems
quite okay. So where in the above snippet you will notice that we scan an expression,
you can be sure that more is possible between these braces and it’s not that unnatural
to TEX after all.

In today’s TEX there are ways to set up characters to be of a certain math class. In the
intermezzo between SAIL TEX and TEX82 that could be done via the what was then the
catcode setter: \chcode, using values beyond the catcode range. Later math got its own
setters for that. At the same time the \char primitive got the option to pass a letter as
alternative for a number. That was later changed, because we got ` as numeric prefix
to characters, like `a. I suppose some users had to change their format files and styles
a few times. It might also have been one of the reasons why later TEX got frozen, not
only because of the rendering but also because of setting it up to do just that.18

The somewhat weird, large plus and minus values in some basic macros are so large that
later they became invalid. In the intermezzo period we see \hfil, \hfilneg, \hss and
their vertical counterparts replace them: no more plus 100000pt and such are needed.
The argument is actually that it saves memory, which is due to the fact that instead of
variables (of glue nodes) one has references to fixed nodes. Of course one can wonder if
in practice it really saved much memory. A similar optimization, namely sharing space
glue by referencing glue nodes fits in here too but isn’t mentioned.

18 There is this active character class in math mode so in some sense we still have a special relationship
between character codes and math classes.

25

The introduction of \xdef was needed because there was no \global prefix yet. Intro­
ducing the \lowercase and \uppercase primitives made sense but later usage demon­
strated that as they operate on their argument and not the node list it is not always
trivial to use them in situations where expansion can interfere.

A final remark in the appendix mentions that control sequences are from then on re­
membered in full, that is: the seven character limit is gone! It probably also made for
less code. That said, we now move on to the first TEX82 implementation that figures in
the presentations.

6 Old TEX82

When we talk about ‘old TEX’, we mean the early ’82 version. The sources can be down­
loaded from Don Knuths website but they are just that: sources. There is nothing you
can run so your mind is the computer. For that reason we will only look at the com­
mands, and comment a bit on those. We are of course talking of a working program
but when you compare it with what we will call ‘new TEX82’ you will notice some dif­
ferences that indicate that the latter is more mature and that decisions were made that
really made sense for the program to succeed and prosper. We start with the primitives
and present the list as filtered from the source(s). Bear in mind that we could have
missed something. The idea is that you go over the list and try to identify commands
that are gone or changed. The first column mentions the primitive, the second column
the so called command category it fits in. You can think a bit of the primitives being
interpreted by a virtual machine that interprets an operator and operand.

It is a long list but we like you to try to locate the primitives that are not in today’s TEX,
that have been renamed, or have become different.

\lineskip assign_glue line_skip_code
\baselineskip assign_glue baseline_skip_code
\parskip assign_glue par_skip_code
\dispskip assign_glue disp_skip_code
\dispaskip assign_glue disp_a_skip_code
\dispbskip assign_glue disp_b_skip_code
\leftskip assign_glue left_skip_code
\rightskip assign_glue right_skip_code
\topskip assign_glue top_skip_code
\splittopskip assign_glue split_top_skip_code
\tabskip assign_glue tab_skip_code
\spaceskip assign_glue space_skip_code
\xspaceskip assign_glue xspace_skip_code
\parfillskip assign_glue par_fill_skip_code
\thinmskip assign_glue thin_mskip_code
\medmskip assign_glue med_mskip_code
\thickmskip assign_glue thick_mskip_code
\output assign_toks output_routine_loc
\everypar assign_toks every_par_loc
\pretolerance assign_int pretolerance_code
\tolerance assign_int tolerance_code

26

\linepenalty assign_int line_penalty_code
\hyphenpenalty assign_int hyphen_penalty_code
\exhyphenpenalty assign_int ex_hyphen_penalty_code
\widowpenalty assign_int widow_penalty_code
\displaywidowpenalty assign_int display_widow_penalty_code
\brokenpenalty assign_int broken_penalty_code
\binoppenalty assign_int bin_op_penalty_code
\relpenalty assign_int rel_penalty_code
\predisplaypenalty assign_int pre_display_penalty_code
\postdisplaypenalty assign_int post_display_penalty_code
\interlinepenalty assign_int inter_line_penalty_code
\doublehyphendemerits assign_int double_hyphen_demerits_code
\finalhyphendemerits assign_int final_hyphen_demerits_code
\adjdemerits assign_int adj_demerits_code
\mag assign_int mag_code
\delimiterfactor assign_int delimiter_factor_code
\looseness assign_int looseness_code
\time assign_int time_code
\day assign_int day_code
\month assign_int month_code
\year assign_int year_code
\showboxbreadth assign_int show_box_breadth_code
\showboxdepth assign_int show_box_depth_code
\hbadness assign_int hbadness_code
\vbadness assign_int vbadness_code
\pause assign_int pause_code
\tracingonline assign_int tracing_online_code
\tracingmacros assign_int tracing_macros_code
\tracingstats assign_int tracing_stats_code
\tracingoutput assign_int tracing_output_code
\tracinglostchars assign_int tracing_lost_chars_code
\tracingcommands assign_int tracing_commands_code
\uchyph assign_int uc_hyph_code
\outputpenalty assign_int output_penalty_code
\hangafter assign_int hang_after_code
\parindent assign_dimen par_indent_code
\mathsurround assign_dimen math_surround_code
\varunit assign_dimen var_unit_code
\lineskiplimit assign_dimen line_skip_limit_code
\hsize assign_dimen hsize_code
\vsize assign_dimen vsize_code
\maxdepth assign_dimen max_depth_code
\splitmaxdepth assign_dimen split_max_depth_code
\hfuzz assign_dimen hfuzz_code
\vfuzz assign_dimen vfuzz_code
\delimiterlimit assign_dimen delimiter_limit_code
\nulldelimiterspace assign_dimen null_delimiter_space_code
\scriptspace assign_dimen script_space_code
\predisplaysize assign_dimen pre_display_size_code
\displaywidth assign_dimen display_width_code
\displayindent assign_dimen display_indent_code
\overfullrule assign_dimen overfull_rule_code
\relax relax 0
\let let 0

27

\char char_num 0
\mathchar math_char_num 0
\mark mark 0
\input input 0
\penalty break_penalty 0
\font def_font 0
\: set_font 0
\fam set_family 0
\number number 0
\setbox set_box 0
\unbox unbox 0
\unskip unskip 0
\lastskip last_skip 0
\halign halign 0
\valign valign 0
\noalign no_align 0
\vrule vrule 0
\hrule hrule 0
\insert insert 0
\vadjust vadjust 0
\ignorespace ignore_space 0
\parshape set_shape 0
\/ ital_corr 0
\accent accent 0
\mathaccent math_accent 0
\texinfo assign_tex_info 0
\delimiter delim_num 0
\limitswitch limit_switch 0
\nonscript non_script 0
\vcenter vcenter 0
\case case_branch 0
\else else_code 0
\omit omit 0
\groupbegin group_begin 0
\groupend group_end 0
\ ex_space 0
\radical radical 0
\par par_end 0
\topmark top_bot_mark top_mark_code
\firstmark top_bot_mark first_mark_code
\botmark top_bot_mark bot_mark_code
\splitfirstmark top_bot_mark split_first_mark_code
\splitbotmark top_bot_mark split_bot_mark_code
\count register int_val
\dimen register dimen_val
\skip register glue_val
\hangindent hang_indent hanging_indent_code
\the the 0
\minus the 1
\spacefactor set_aux hmode
\prevdepth set_aux vmode
\span tab_mark span_code
\cr car_ret cr_code
\end stop 0

28

\dump stop 1
\hskip hskip skip_code
\hfil hskip fil_code
\hfill hskip fill_code
\hss hskip ss_code
\hfilneg hskip fil_neg_code
\vskip vskip skip_code
\vfil vskip fil_code
\vfill vskip fill_code
\vss vskip ss_code
\vfilneg vskip fil_neg_code
\mskip mskip mskip_code
\kern kern normal
\mkern mkern mu_glue
\moveleft hmove 1
\moveright hmove 0
\raise vmove 1
\lower vmove 0
\box make_box box_code
\copy make_box copy_code
\lastbox make_box last_box_code
\vsplit make_box vsplit_code
\vtop make_box vtop_code
\vbox make_box vtop_code+vmode
\hbox make_box vtop_code+hmode
\shipout leader_ship a_leaders-1
\leaders leader_ship a_leaders
\cleaders leader_ship c_leaders
\xleaders leader_ship x_leaders
\indent start_par 1
\noindent start_par 0
\- discretionary 1
\discretionary discretionary 0
\eqno eq_no 0
\leqno eq_no 1
\mathord math_comp ord_noad
\mathop math_comp op_noad
\mathbin math_comp bin_noad
\mathrel math_comp rel_noad
\mathopen math_comp open_noad
\mathclose math_comp close_noad
\mathpunct math_comp punct_noad
\underline math_comp under_noad
\overline math_comp over_noad
\displaystyle math_style display_style
\textstyle math_style text_style
\scriptstyle math_style script_style
\scriptscriptstyle math_style script_script_style
\above above above_code
\over above over_code
\atop above atop_code
\xabovex above xx_code+above_code
\xoverx above xx_code+over_code
\xatopx above xx_code+atop_code

29

\left left_right left_noad
\right left_right right_noad
\if if_test if_char_code
\ifnum if_test if_int_code
\ifdim if_test if_dimen_code
\ifeven if_test if_even_code
\ifvmode if_test if_vmode_code
\ifhmode if_test if_hmode_code
\ifmmode if_test if_mmode_code
\ifinner if_test if_inner_code
\ifabsent if_test if_absent_code
\ifx if_test ifx_code
\long prefix 1
\outer prefix 2
\global prefix 4
\def def 0
\gdef def 1
\edef def 2
\xdef def 3
\chcode def_code ch_code_base
\mathcode def_code math_code_base
\lccode def_code lc_code_base
\uccode def_code uc_code_base
\sfcode def_code sf_code_base
\delcode def_code del_code_base
\textfont def_family math_font_base
\scriptfont def_family math_font_base+script_size
\scriptscriptfont def_family math_font_base+script_script_size
\setcount set_register int_val
\setdimen set_register dimen_val
\setskip set_register glue_val
\advcount adv_register int_val
\advdimen adv_register dimen_val
\advskip adv_register glue_val
\multcount mult_register int_val
\multdimen mult_register dimen_val
\multskip mult_register glue_val
\divcount div_register int_val
\divdimen div_register dimen_val
\divskip div_register glue_val
\hyphenation hyph_data 0
\patterns hyph_data 1
\batchmode set_interaction batch_mode
\nonstopmode set_interaction nonstop_mode
\scrollmode set_interaction scroll_mode
\errorstopmode set_interaction error_stop_mode
\message message 0
\errmessage message 1
\lowercase case_shift lc_code_base
\uppercase case_shift uc_code_base
\show xray show_code
\showbox xray show_box_code
\showthe xray show_the_code
\showlists xray show_lists

30

\open extension open_node
\send extension send_node
\close extension close_node
\xsend extension xsend_node

The list of commands that the primitives are grouped in:

above 6
accent 1
adv_register 3
assign_dimen 17
assign_glue 17
assign_int 37
assign_tex_info 1
assign_toks 2
break_penalty 1
car_ret 1
case_branch 1
case_shift 2
char_num 1
def 4
def_code 6
def_family 3
def_font 1
delim_num 1
discretionary 2
div_register 3
else_code 1
eq_no 2
ex_space 1
extension 4
group_begin 1
group_end 1
halign 1
hang_indent 1

hmove 2
hrule 1
hskip 5
hyph_data 2
if_test 10
ignore_space 1
input 1
insert 1
ital_corr 1
kern 1
last_skip 1
leader_ship 4
left_right 2
let 1
limit_switch 1
make_box 7
mark 1
math_accent 1
math_char_num 1
math_comp 9
math_style 4
message 2
mkern 1
mskip 1
mult_register 3
no_align 1
non_script 1
number 1

omit 1
par_end 1
prefix 3
radical 1
register 3
relax 1
set_aux 2
set_box 1
set_family 1
set_font 1
set_interaction 4
set_register 3
set_shape 1
start_par 2
stop 2
tab_mark 1
the 2
top_bot_mark 5
unbox 1
unskip 1
vadjust 1
valign 1
vcenter 1
vmove 2
vrule 1
vskip 5
xray 4

So what are the most significant differences with the SAIL version? We see many more
primitives and quite some are for setting and getting parameters. These are now orga­
nized into integers, dimensions, glue, muglue and token lists.

A noticeable difference with today’s TEX is the set_font that uses this \: shortcut. It’s
good to know that we still have limited memory. Machines got more powerful but even
a DEC 10 (or 20) had to serve more than one user and given that each seemingly had
500 kB running TEX puts some strain on the system (swapping memory and such). It is
why there were two versions, one that could dump a format and another that just loaded
it and therefore could drop some code in favor of using more memory for processing.

31

But fonts, although small by today’s standards took space so the number was limited.
On the other hand, we got away from the short (sometimes cryptic) names and have
way more primitives. It feels good.

Watch commands like \texinfo, \groupend and \groupbegin, \hangindent with its own
command class, \xoverx. But also look at the various \adv... commands and \minus.
Conditionals have this \ifeven the future negated \ifodd; the \ifabsent check will at
some point become \ifvoid and \case will migrate to \ifcase. Also consider \varunit
and \: as we will see these change later.

We see the concept of mu glue show up, and we see \thinmskip pop up. Interestingly
that one became \thinmuskip, probably because \mskip is a more general skipper and
therefore we need to avoid confusion. It’s in the details. Going from disp to display also
feels natural. We see \xabovex and companions, \chcode, quite some \set..., \adv...,
\mult... and \div.... Maybe if there had’t been so many we’d have ended up with
\add and \subtract instead of just \advance.

Watch how the \shipout is treated as a leader. The operands (chr) now use more sym­
bolic names but not all of them. Interaction internally uses a variable with four values
but each got its primitive. The tracing options were split into independent parameters.

7 New TEX82–89
The current version of TEX has the next list of primitives. There are some differences in
names but more significant is that we have a different grouping in commands. As with
the previous versions, not all operands have symbolic names.

\lineskip assign_glue glue_base+line_skip_code
\baselineskip assign_glue glue_base+baseline_skip_code
\parskip assign_glue glue_base+par_skip_code
\abovedisplayskip assign_glue glue_base+above_display_skip_code
\belowdisplayskip assign_glue glue_base+below_display_skip_code
\abovedisplayshortskip assign_glue glue_base+above_display_short_skip_code
\belowdisplayshortskip assign_glue glue_base+below_display_short_skip_code
\leftskip assign_glue glue_base+left_skip_code
\rightskip assign_glue glue_base+right_skip_code
\topskip assign_glue glue_base+top_skip_code
\splittopskip assign_glue glue_base+split_top_skip_code
\tabskip assign_glue glue_base+tab_skip_code
\spaceskip assign_glue glue_base+space_skip_code
\xspaceskip assign_glue glue_base+xspace_skip_code
\parfillskip assign_glue glue_base+par_fill_skip_code
\thinmuskip assign_mu_glue glue_base+thin_mu_skip_code
\medmuskip assign_mu_glue glue_base+med_mu_skip_code
\thickmuskip assign_mu_glue glue_base+thick_mu_skip_code
\output assign_toks output_routine_loc
\everypar assign_toks every_par_loc
\everymath assign_toks every_math_loc
\everydisplay assign_toks every_display_loc
\everyhbox assign_toks every_hbox_loc

32

\everyvbox assign_toks every_vbox_loc
\everyjob assign_toks every_job_loc
\everycr assign_toks every_cr_loc
\errhelp assign_toks err_help_loc
\pretolerance assign_int int_base+pretolerance_code
\tolerance assign_int int_base+tolerance_code
\linepenalty assign_int int_base+line_penalty_code
\hyphenpenalty assign_int int_base+hyphen_penalty_code
\exhyphenpenalty assign_int int_base+ex_hyphen_penalty_code
\clubpenalty assign_int int_base+club_penalty_code
\widowpenalty assign_int int_base+widow_penalty_code
\displaywidowpenalty assign_int int_base+display_widow_penalty_code
\brokenpenalty assign_int int_base+broken_penalty_code
\binoppenalty assign_int int_base+bin_op_penalty_code
\relpenalty assign_int int_base+rel_penalty_code
\predisplaypenalty assign_int int_base+pre_display_penalty_code
\postdisplaypenalty assign_int int_base+post_display_penalty_code
\interlinepenalty assign_int int_base+inter_line_penalty_code
\doublehyphendemerits assign_int int_base+double_hyphen_demerits_code
\finalhyphendemerits assign_int int_base+final_hyphen_demerits_code
\adjdemerits assign_int int_base+adj_demerits_code
\mag assign_int int_base+mag_code
\delimiterfactor assign_int int_base+delimiter_factor_code
\looseness assign_int int_base+looseness_code
\time assign_int int_base+time_code
\day assign_int int_base+day_code
\month assign_int int_base+month_code
\year assign_int int_base+year_code
\showboxbreadth assign_int int_base+show_box_breadth_code
\showboxdepth assign_int int_base+show_box_depth_code
\hbadness assign_int int_base+hbadness_code
\vbadness assign_int int_base+vbadness_code
\pausing assign_int int_base+pausing_code
\tracingonline assign_int int_base+tracing_online_code
\tracingmacros assign_int int_base+tracing_macros_code
\tracingstats assign_int int_base+tracing_stats_code
\tracingparagraphs assign_int int_base+tracing_paragraphs_code
\tracingpages assign_int int_base+tracing_pages_code
\tracingoutput assign_int int_base+tracing_output_code
\tracinglostchars assign_int int_base+tracing_lost_chars_code
\tracingcommands assign_int int_base+tracing_commands_code
\tracingrestores assign_int int_base+tracing_restores_code
\uchyph assign_int int_base+uc_hyph_code
\outputpenalty assign_int int_base+output_penalty_code
\maxdeadcycles assign_int int_base+max_dead_cycles_code
\hangafter assign_int int_base+hang_after_code
\floatingpenalty assign_int int_base+floating_penalty_code
\globaldefs assign_int int_base+global_defs_code
\fam assign_int int_base+cur_fam_code
\escapechar assign_int int_base+escape_char_code
\defaulthyphenchar assign_int int_base+default_hyphen_char_code
\defaultskewchar assign_int int_base+default_skew_char_code
\endlinechar assign_int int_base+end_line_char_code
\newlinechar assign_int int_base+new_line_char_code

33

\language assign_int int_base+language_code
\lefthyphenmin assign_int int_base+left_hyphen_min_code
\righthyphenmin assign_int int_base+right_hyphen_min_code
\holdinginserts assign_int int_base+holding_inserts_code
\errorcontextlines assign_int int_base+error_context_lines_code
\parindent assign_dimen dimen_base+par_indent_code
\mathsurround assign_dimen dimen_base+math_surround_code
\lineskiplimit assign_dimen dimen_base+line_skip_limit_code
\hsize assign_dimen dimen_base+hsize_code
\vsize assign_dimen dimen_base+vsize_code
\maxdepth assign_dimen dimen_base+max_depth_code
\splitmaxdepth assign_dimen dimen_base+split_max_depth_code
\boxmaxdepth assign_dimen dimen_base+box_max_depth_code
\hfuzz assign_dimen dimen_base+hfuzz_code
\vfuzz assign_dimen dimen_base+vfuzz_code
\delimitershortfall assign_dimen dimen_base+delimiter_shortfall_code
\nulldelimiterspace assign_dimen dimen_base+null_delimiter_space_code
\scriptspace assign_dimen dimen_base+script_space_code
\predisplaysize assign_dimen dimen_base+pre_display_size_code
\displaywidth assign_dimen dimen_base+display_width_code
\displayindent assign_dimen dimen_base+display_indent_code
\overfullrule assign_dimen dimen_base+overfull_rule_code
\hangindent assign_dimen dimen_base+hang_indent_code
\hoffset assign_dimen dimen_base+h_offset_code
\voffset assign_dimen dimen_base+v_offset_code
\emergencystretch assign_dimen dimen_base+emergency_stretch_code
\ ex_space 0
\/ ital_corr 0
\accent accent 0
\advance advance 0
\afterassignment after_assignment 0
\aftergroup after_group 0
\begingroup begin_group 0
\char char_num 0
\csname cs_name 0
\delimiter delim_num 0
\divide divide 0
\endcsname end_cs_name 0
\endgroup end_group 0
\expandafter expand_after 0
\font def_font 0
\fontdimen assign_font_dimen 0
\halign halign 0
\hrule hrule 0
\ignorespaces ignore_spaces 0
\insert insert 0
\mark mark 0
\mathaccent math_accent 0
\mathchar math_char_num 0
\mathchoice math_choice 0
\multiply multiply 0
\noalign no_align 0
\noboundary no_boundary 0
\noexpand no_expand 0

34

\nonscript non_script 0
\omit omit 0
\parshape set_shape 0
\penalty break_penalty 0
\prevgraf set_prev_graf 0
\radical radical 0
\read read_to_cs 0
\relax relax 256
\setbox set_box 0
\the the 0
\toks toks_register 0
\vadjust vadjust 0
\valign valign 0
\vcenter vcenter 0
\vrule vrule 0
\par par_end 256
\input input 0
\endinput input 1
\topmark top_bot_mark top_mark_code
\firstmark top_bot_mark first_mark_code
\botmark top_bot_mark bot_mark_code
\splitfirstmark top_bot_mark split_first_mark_code
\splitbotmark top_bot_mark split_bot_mark_code
\count register int_val
\dimen register dimen_val
\skip register glue_val
\muskip register mu_val
\spacefactor set_aux hmode
\prevdepth set_aux vmode
\deadcycles set_page_int 0
\insertpenalties set_page_int 1
\wd set_box_dimen width_offset
\ht set_box_dimen height_offset
\dp set_box_dimen depth_offset
\lastpenalty last_item int_val
\lastkern last_item dimen_val
\lastskip last_item glue_val
\inputlineno last_item input_line_no_code
\badness last_item badness_code
\number convert number_code
\romannumeral convert roman_numeral_code
\string convert string_code
\meaning convert meaning_code
\fontname convert font_name_code
\jobname convert job_name_code
\if if_test if_char_code
\ifcat if_test if_cat_code
\ifnum if_test if_int_code
\ifdim if_test if_dim_code
\ifodd if_test if_odd_code
\ifvmode if_test if_vmode_code
\ifhmode if_test if_hmode_code
\ifmmode if_test if_mmode_code
\ifinner if_test if_inner_code

35

\ifvoid if_test if_void_code
\ifhbox if_test if_hbox_code
\ifvbox if_test if_vbox_code
\ifx if_test ifx_code
\ifeof if_test if_eof_code
\iftrue if_test if_true_code
\iffalse if_test if_false_code
\ifcase if_test if_case_code
\fi fi_or_else fi_code
\or fi_or_else or_code
\else fi_or_else else_code
\nullfont set_font null_font
\span tab_mark span_code
\cr car_ret cr_code
\crcr car_ret cr_cr_code
\pagegoal set_page_dimen 0
\pagetotal set_page_dimen 1
\pagestretch set_page_dimen 2
\pagefilstretch set_page_dimen 3
\pagefillstretch set_page_dimen 4
\pagefilllstretch set_page_dimen 5
\pageshrink set_page_dimen 6
\pagedepth set_page_dimen 7
\end stop 0
\dump stop 1
\hskip hskip skip_code
\hfil hskip fil_code
\hfill hskip fill_code
\hss hskip ss_code
\hfilneg hskip fil_neg_code
\vskip vskip skip_code
\vfil vskip fil_code
\vfill vskip fill_code
\vss vskip ss_code
\vfilneg vskip fil_neg_code
\mskip mskip mskip_code
\kern kern explicit
\mkern mkern mu_glue
\moveleft hmove 1
\moveright hmove 0
\raise vmove 1
\lower vmove 0
\box make_box box_code
\copy make_box copy_code
\lastbox make_box last_box_code
\vsplit make_box vsplit_code
\vtop make_box vtop_code
\vbox make_box vtop_code+vmode
\hbox make_box vtop_code+hmode
\shipout leader_ship a_leaders-1
\leaders leader_ship a_leaders
\cleaders leader_ship c_leaders
\xleaders leader_ship x_leaders
\indent start_par 1

36

\noindent start_par 0
\unpenalty remove_item penalty_node
\unkern remove_item kern_node
\unskip remove_item glue_node
\unhbox un_hbox box_code
\unhcopy un_hbox copy_code
\unvbox un_vbox box_code
\unvcopy un_vbox copy_code
\- discretionary 1
\discretionary discretionary 0
\eqno eq_no 0
\leqno eq_no 1
\mathord math_comp ord_noad
\mathop math_comp op_noad
\mathbin math_comp bin_noad
\mathrel math_comp rel_noad
\mathopen math_comp open_noad
\mathclose math_comp close_noad
\mathpunct math_comp punct_noad
\mathinner math_comp inner_noad
\underline math_comp under_noad
\overline math_comp over_noad
\displaylimits limit_switch normal
\limits limit_switch limits
\nolimits limit_switch no_limits
\displaystyle math_style display_style
\textstyle math_style text_style
\scriptstyle math_style script_style
\scriptscriptstyle math_style script_script_style
\above above above_code
\over above over_code
\atop above atop_code
\abovewithdelims above delimited_code+above_code
\overwithdelims above delimited_code+over_code
\atopwithdelims above delimited_code+atop_code
\left left_right left_noad
\right left_right right_noad
\long prefix 1
\outer prefix 2
\global prefix 4
\def def 0
\gdef def 1
\edef def 2
\xdef def 3
\let let normal
\futurelet let normal+1
\chardef shorthand_def char_def_code
\mathchardef shorthand_def math_char_def_code
\countdef shorthand_def count_def_code
\dimendef shorthand_def dimen_def_code
\skipdef shorthand_def skip_def_code
\muskipdef shorthand_def mu_skip_def_code
\toksdef shorthand_def toks_def_code
\catcode def_code cat_code_base

37

\mathcode def_code math_code_base
\lccode def_code lc_code_base
\uccode def_code uc_code_base
\sfcode def_code sf_code_base
\delcode def_code del_code_base
\textfont def_family math_font_base
\scriptfont def_family math_font_base+script_size
\scriptscriptfont def_family math_font_base+script_script_size
\hyphenation hyph_data 0
\patterns hyph_data 1
\hyphenchar assign_font_int 0
\skewchar assign_font_int 1
\batchmode set_interaction batch_mode
\nonstopmode set_interaction nonstop_mode
\scrollmode set_interaction scroll_mode
\errorstopmode set_interaction error_stop_mode
\openin in_stream 1
\closein in_stream 0
\message message 0
\errmessage message 1
\lowercase case_shift lc_code_base
\uppercase case_shift uc_code_base
\show xray show_code
\showbox xray show_box_code
\showthe xray show_the_code
\showlists xray show_lists_code
\openout extension open_node
\write extension write_node
\closeout extension close_node
\special extension special_node
\immediate extension immediate_code
\setlanguage extension set_language_code

Again we show the list of commands. It’s about as large as the previous one although
we got rid of some. Looking at the list is a test of how well you know the current set of
official TEX primitives.

above 6
accent 1
advance 1
after_assignment 1
after_group 1
assign_dimen 21
assign_font_dimen 1
assign_font_int 2
assign_glue 15
assign_int 55
assign_mu_glue 3
assign_toks 9
begin_group 1
break_penalty 1

car_ret 2
case_shift 2
char_num 1
convert 6
cs_name 1
def 4
def_code 6
def_family 3
def_font 1
delim_num 1
discretionary 2
divide 1
end_cs_name 1
end_group 1

eq_no 2
ex_space 1
expand_after 1
extension 6
fi_or_else 3
halign 1
hmove 2
hrule 1
hskip 5
hyph_data 2
if_test 17
ignore_spaces 1
in_stream 2
input 2

38

insert 1
ital_corr 1
kern 1
last_item 5
leader_ship 4
left_right 2
let 2
limit_switch 3
make_box 7
mark 1
math_accent 1
math_char_num 1
math_choice 1
math_comp 10
math_style 4
message 2
mkern 1
mskip 1
multiply 1

no_align 1
no_boundary 1
no_expand 1
non_script 1
omit 1
par_end 1
prefix 3
radical 1
read_to_cs 1
register 4
relax 1
remove_item 3
set_aux 2
set_box 1
set_box_dimen 3
set_font 1
set_interaction 4
set_page_dimen 8
set_page_int 2

set_prev_graf 1
set_shape 1
shorthand_def 7
start_par 2
stop 2
tab_mark 1
the 1
toks_register 1
top_bot_mark 5
un_hbox 2
un_vbox 2
vadjust 1
valign 1
vcenter 1
vmove 2
vrule 1
vskip 5
xray 4

We will make it easier to see the changes in organizing the commands. The second
column shows the number of primitives in the older version, the third column refers to
the current version. The bold entries are unchanged names.

above 6 6
accent 1 1
adv_register 3
advance 1
after_assignment 1
after_group 1
assign_dimen 17 21
assign_font_dimen 1
assign_font_int 2
assign_glue 17 15
assign_int 37 55
assign_mu_glue 3
assign_tex_info 1
assign_toks 2 9
begin_group 1
break_penalty 1 1
car_ret 1 2
case_branch 1
case_shift 2 2
char_num 1 1
convert 6
cs_name 1

def 4 4
def_code 6 6
def_family 3 3
def_font 1 1
delim_num 1 1
discretionary 2 2
div_register 3
divide 1
else_code 1
end_cs_name 1
end_group 1
eq_no 2 2
ex_space 1 1
expand_after 1
extension 4 6
fi_or_else 3
group_begin 1
group_end 1
halign 1 1
hang_indent 1
hmove 2 2
hrule 1 1

39

hskip 5 5
hyph_data 2 2
if_test 10 17
ignore_space 1
ignore_spaces 1
in_stream 2
input 1 2
insert 1 1
ital_corr 1 1
kern 1 1
last_item 5
last_skip 1
leader_ship 4 4
left_right 2 2
let 1 2
limit_switch 1 3
make_box 7 7
mark 1 1
math_accent 1 1
math_char_num 1 1
math_choice 1
math_comp 9 10
math_style 4 4
message 2 2
mkern 1 1
mskip 1 1
mult_register 3
multiply 1
no_align 1 1
no_boundary 1
no_expand 1
non_script 1 1
number 1
omit 1 1
par_end 1 1

prefix 3 3
radical 1 1
read_to_cs 1
register 3 4
relax 1 1
remove_item 3
set_aux 2 2
set_box 1 1
set_box_dimen 3
set_family 1
set_font 1 1
set_interaction 4 4
set_page_dimen 8
set_page_int 2
set_prev_graf 1
set_register 3
set_shape 1 1
shorthand_def 7
start_par 2 2
stop 2 2
tab_mark 1 1
the 2 1
toks_register 1
top_bot_mark 5 5
un_hbox 2
un_vbox 2
unbox 1
unskip 1
vadjust 1 1
valign 1 1
vcenter 1 1
vmove 2 2
vrule 1 1
vskip 5 5
xray 4 4

It is interesting to see how TEX evolved and got more organized with each iteration. It
also made me feel a bit less for reorganizing these commands a bit more. In LuaTEX we
added primitives, just like for instance e-TEX and pdfTEX had done. In LuaMetaTEX we
added even more. In one of the presentations Don shows a trick to add two dimensions:
do two \hskip’s in a \hbox and use the width as sum. He then explains that one can also
subtract, multiply and divide using such trickery. However, in the final version of TEX
we got \advance, \divide and \multiply, and e-TEX later added simple expressions.
So in the end, the fact that LuaMetaTEX got a more powerful expression mechanism

40

and additional data types feels kind of natural. So, why not show the LuaMetaTEX
command grouping here? This is what we have 25 years later:

accent 1
active_char

after_something 8
alignment

alignment_tab 1
arithmic 10
association 1
auxiliary 5
begin_group 3
begin_local 12
begin_paragraph 8
boundary 10
box_property 29
call

case_shift 2
catcode_table 3
char_given

char_number 2
combine_toks 10
comment

constant_call

convert 35
cs_name 4
deep_frozen_dont_expand

deep_frozen_end_template

deep_frozen_keep_constant

def 10
define_char_code 12
define_family 3
define_font 1
delimiter_number 2
dimension

discretionary 4
end_cs_name 1
end_group 3
end_job 2
end_line

end_local 1
end_match

end_paragraph 2
end_template 7
equation_number 2

escape

expand_after 15
explicit_space 2
font_property 15
fontspec

get_mark 11
gluespec

halign 1
hmove 2
hrule 3
hskip 5
hyphenation 8
if_test 68
ignore

ignore_something 6
index

input 10
insert 1
integer

interaction 4
internal_attribute

internal_attribute_reference

internal_box_reference

internal_dimension 32
internal_dimension_reference

internal_glue 29
internal_glue_reference

internal_integer 199
internal_integer_reference

internal_muglue 5
internal_muglue_reference

internal_posit

internal_posit_reference

internal_toks 15
internal_toks_reference

invalid_char

italic_correction 4
iterator_value

kern 3
leader 5
left_brace

legacy 1

41

let 15
letter

local_box 4
lua_call

lua_function_call 2
lua_local_call

lua_protected_call

lua_semiprotected_call

lua_value

make_box 27
mark 4
match

math_accent 2
math_char_number 5
math_choice 3
math_component 11
math_fence 8
math_fraction 16
math_modifier 14
math_parameter 127
math_radical 10
math_script 16
math_shift

math_shift_cs 6
math_style 21
mathspec

message 2
mkern 1
mskip 2
mugluespec

mvl 2
no_expand 1
node

other_char

page_property 42
parameter 2
parameter_reference

penalty 3
posit

prefix 22
protected_call

register 7
register_attribute

register_attribute_reference

register_dimension

register_dimension_reference

register_glue

register_glue_reference

register_integer

register_integer_reference

register_muglue

register_muglue_reference

register_posit

register_posit_reference

register_toks

register_toks_reference

relax 3
remove_item 4
right_brace

semi_protected_call

set_box 1
set_font 1
shorthand_def 20
some_item 115
spacer

specification 18
specification_reference

specificationspec

subscript

superscript

the 8
tolerant_call

tolerant_protected_call

tolerant_semi_protected_call

un_hbox 3
un_vbox 8
undefined_cs

unit_reference

vadjust 1
valign 1
vcenter 1
vmove 2
vrule 4
vskip 5
xray 9

Some are renames, others regrouping, but there are also new ones. For instance the

42

command group association deals with user defined units (bound to a register, macro
or some Lua call). The begin_local relates to \localcontrol and friends, a way to
exercise the main loop inside a macro and avoid side effects; a bit similar to vardef
in MetaPost. Boundaries are new and have a boundary command group. The various
parameters (variables) are split into internal and register (user) ones.

Not all commands have a primitive (this is also true for the predecessors where we
didn’t show them) but here we just show them with no primitive count. We have regis­
ters (way more than original TEX) but also have additional pseudo registers that are
basically (efficient) macros. This means that we can generate a version with less regis­
ters which, even with a decent set, saves about the same amount of memory that good
old TEX has available for processing documents, including its own binary.19 Anyway,
some of the codes with no number have similar command codes in old and new TEX,
we didn’t invent all those wheels.

It makes no sense to show the new primitives but we have for instance iterators that
have a command category but primitives that are in other groups. This has to do with
the way they behave. Of course we have a bunch of Lua related ones too. The \..._call
commands are fast accessors to specific definitions, like \protected or \tolerant ones.
Command groups like active_char and letter are also present in the reference TEX
engine, as they relate to the catcodes, but characters are not primitives. The fact that we
have Unicode and therefore huge slices of potential entries in TEX’s equivalents space
already makes for different internals anyway. But looking at the tables of various en­
gines can at least give an idea of how the engines evolved. It definitely made watching
these 40 year old videos so much more interesting and fun.

8 The timeline
We started with a rough timeline but there is a very good source for detective work: the
errorlog.tex file also typeset in Knuths Digital Typography. I wish I had the discipline
to come up with something like that but I can use the fact that I write intermediate wrap-
ups as a lame excuse. From 1978 onward you can read what bugs were solved, what
renames happened, what got introduced, etc. Let’s mention a few entries that relate to
things discussed earlier in this document, especially in the intermezzo section.

At 19 May 1978 we note “G249. Add a \topbaseline feature [later called \topskip].
@1001”. Before that we had some skips after top inserts and before bottom inserts but
these became skip registers eventually. On 5 Aug 1978 we read “G336. Generalize
\pageno to \count <digit>. @236” but \pageno later became the de-facto standard for
\the\count 0 so it never really went away. From mid 1979 it becomes clear that the new
par-builder is being worked on, we also see the mentioned fillers show up on 23 Jul
1979: “E409. Introduce new primitives \hfil, \vfil, \hfilneg, \vfilneg. @1058”

19 The e-TEX extension pushed TEX from 256 to 32.786 and LuaTEX doubled that but it makes no sense to
have that many: who needs that many muskips or attributes? Some 8K seems more than enough for
each with probably 4K for the glue and muglue.

43

Not mentioned in the book as upcoming are active characters. These are mentioned 25
Jan 1980: “G427. Introduce active characters (one-stroke control sequences). [I don’t
yet go all the way: The meanings of x and \x have to be identical.] @344” Actually,
active characters are an interesting concept although in today’s usage (think Unicode)
they make less sense.

We already saw \def and variants being in the SAIL version but in 1980 we also got
“G444. Add a new \newname feature (soon changed to \let). @1221”.

A milestone is 13 Jun 1980: “Today I’m beginning to overhaul the line-breaking routine,
and I’ll also install miscellaneous goodies.” There is also a new feature: “G459. Add a
new parameter \loose [later \looseness]; now parameters are allowed to take nega­
tive values. @875”. A day later 14 Jun 1980 we read “Q461. Install new line-breaking
routines, including \parshape. (These major changes are introduced as Michael Plass
and I write our article.) @813”.

The inserts are maturing: “G482. Add new \topsep and \botsep features. [These are
TEX78’s way to put space at the edge of inserts, replaced in TEX82 by the \skip register
corresponding to an \insert class.] @1009”. These changes happen when Don is also
writing the upcoming books, and I think it demonstrates his valid point that writing
a manual is a great way to improve the code, for instance with respect to consistency.
Implementation, documenting and using go hand-in-hand.

Here’s one for us: “G490. Add the dimension cc for European users. @458”. I never
used it as I prefer cm, mm and pt, as silent protest against the American in and bp.

This is a nice one: “C491. Make scan_keyword match uppercase letters as alternatives to
lowercase ones (suggested by Barbara Beeton’s experiments with \uppercase). @407”.

Then there is the comment “Am freezing current program as version −0.25; a week of
tug lectures begins tomorrow.” Are these the ones from the video? Was that something
tug? In one of those videos the 5 Aug 1982 change “IX158. The .err file should be
.log instead. @534” is announced, a decision driven by user input during a break in
the course.

Around that time there is also the optimistic “I believe the line_break routine has
passed its test perfectly.” and then “FX247. Initialize second_indent in the easy case.
@848”.20

The class related character definitions show up: “GX260. Introduce new primitive
\mathchardef, to save space and time. @1224” which is nicer that a mix with character
catcodes. In this perspective it’s good to remind the reader that we have at most 256
characters in a font. In a modern Unicode font we have way more which also means that

20 Mikael and I still try to understand what this easy case refers to, other than that it relates to looseness in
the current version. Thanks to “IX334 X199. Introduce serial numbers in line-break records, improving
readability and independence. @846” we can indeed see how many passive nodes get set.

44

we have character codes that need a 32 bit integer. Some of the original TEX approaches
in LuaTEX got a different implementation, for instance by using sparse arrays.21

Relatively late we see \: being replaced; the videos indeed still use that short command:
“G545. Install a major change: Fonts now have identifiers instead of code letters. Elim­
inate the \: primitive, and give corresponding new features to \the. @209”.

The par builder gets an update: “A554. Compute demerits more suitably by adding a
penalty squared, instead of adding penalties before squaring. @859” and “Previously
a slightly loose hyphenated line followed by a decent line was considered worse than a
decent hyphenated line followed by a quite loose line.” Also “E566. Omit the ‘first pass’
and try hyphenations immediately, if \pretolerance is negative (suggested by DRF).
@863”. How many users do the latter? We mentioned this already but it happens late
1982: “C578. Change \hangindent to a normal dimension parameter. [It had been a
combination of \hangindent and \hangafter, with special syntax.] @247”.

We also mentioned the \ifeven to \ifodd change; the new one is mentioned: “S591 564.
Make \ifodd 1\else legal by introducing if_code. @489”.

The beginning of 1983 also marks the beginning of new grouping names: “C597. Re­
name \groupbegin and \groupend as \begingroup and \endgroup. @265”.

Documenting likely lead to: “C639 607. Remove the kludgy math codes introduced ear­
lier; make \fam a normal integer parameter and allow \mathcode to equal 215. @1233”.
We saw in basic that octal was popular but “I641 639. Replace octal output (print_octal)
by hexadecimal (print_hex) so that math codes are clearer. @67”.

At 22 Feb 1979 we could read “G387. Add vu and \varunit. [TEX82 will eventually al­
low arbitrary internal dimensions as units of measure.] @453” and that announcement
between square brackets lead to 25 May 1983 mentioning “G695 X231. Remove dm and
vu; allow the more general .5\hsize”. We also read “@455. C696. Change \texinfo
<f> <n> to \fontdimen <n> <f>. @578”.

We also mentioned the introduction of units to access box dimensions but the 27 May
1983 entry tells “G703 695. Replace (and generalize) the previous uses of ht, wd, and dp
in dimensions by introducing the new control sequences \ht, \wd, and \dp. @1247”.

If you’re interested how software development went in the years 1978 to 1983 this error
log is a must-read because it actually is a development log. Between the lines you can
read about compilation and compiler issues, access to computers during day and night,
and evolving features. It makes one who is only accustomed to fast personal computers,
screen editors, maybe code specific features in editors, seemingly unlimited memory
and disc space a bit more humble. It also makes clear that thinking beforehand as well
as printing and reading a source was part of a skill-set, if only because trial-and-error
or just trial-after-coding was less of an option.

21 In musing-neat.tex I explore a bit how characters are stored in a node list, the suggested way to handle
large fonts and why we do it differently.

45

9 Conclusion
It was interesting to compare the SAIL/TEX82 lectures, and TEX82 as-of-now with each
other, especially because I spent a few decades with ConTEXt friends on extending Lua-
TEX and later LuaMetaTEX. I had of course browsed the error log but checking it again
in this perspective is nice. Looking at how it all evolved also gives some clues why
things are as they are now; to some extent it all makes even more sense: limitations
and possibilities. It also matters (for me) that in the meantime, for quite some years, I
have been involved in and have been playing around with extending (core features of)
the engine, also in the perspective of developing ConTEXt, which has its demands and
stresses the machinery.

One has to go back in time and watch the development process, the teamwork, and the
inspiring leadership, working towards quality, that made it possible. The success of TEX
and friends very much related to the way Don Knuth interacted with the community,
and the effort he put in all this, often setting aside his main priority, the art books. The
result is still pretty valid, and those who claim otherwise can take a lesson from that.
After all, in software development illogical arguments, sometimes ridiculing (the past),
bragging about trivial achievements, quick and dirty finalizing, lack of quality control
and what more, are quite common in these commercially driven developments. And
we’re not even talking of using generative artificial intelligence to come up with new
code, based on old code, presented as original. But watching these videos confirms
why I like TEX, and why I got attracted to it, seeing the books, understanding little
without the ability to run the programs, picking up on that, and ending up in the Con-
TEXt community. Figuring out solutions using a framework for typesetting, one that
had been designed with a future usage in mind, can be fun. It’s pretty hard to beat!

An important lesson is that coming up with a (original) solution (for your problem)
that is also future proof takes time. One needs to play with it and be willing to look at
it from a different angle. It makes little sense to work in isolation because constructive
user input helps. To that I personally add that if you don’t like some development, just
ignore it; there is no need to waste time on competition and claiming that this is better
than that and that everyone should use whatever you like. Just think of this: TEX has
been around for decades for good reasons.

Hans Hagen
December 2025
Hasselt NL

