
combine Manual
Flexible Data Manipulation

Edition 0.3.2 for Release 0.3.2

by Daniel P. Valentine

This manual is for combine (version 0.3.2).
Copyright c© 2002, 2003, 2004 Daniel P. Valentine.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation or the author.
Permission is granted to quote portions of this document for use in reviews.
No publication data available yet.

combine Manual 1

combine Manual

This manual is for combine version 0.3.2. It provides general information for processing
data files with the combine utility.

Chapter 1: Overview of combine 2

1 Overview of combine

1.1 Introduction

combine is primarily a program for merging files on a common key. While such things
as table joins on keys are common in database systems like MySQL, there seems to be a
marked failure in the availability for such processing on text files. combine is intended to
fill that gap.

Another way of looking at combine is as the kernel of a database system without all the
overhead (and safeguards) associated with such systems. The missing baggage that appeals
most to me is the requirement to load data into somebody else’s format before working with
it. combine’s design is intended to allow it to work with most data directly from the place
where it already is.

In looking around for existing software that wanted to do what I wanted to do, the closest
I came was the command join in GNU and other operating systems. The join command
has some limitations that I needed to overcome. In particular, in matching it works on only
one field each in only two files. For such a match, on files whose fields are separated by a
delimiter, I’m sure that join is a more efficient choice. Someday I’ll test that assumption.

Once I started writing the program, I had to come up with a name. Given that one of the
earliest applications that I imagined for such a program would be to prepare data for storage
in a data warehouse, I thought to where the things that are stored in physical warehouses
come from. At that point, I came up with the name DataFactory. Unfortunately, just as I
got ready to release it, I noticed that someone else has that as a registered trademark.

As a result, I have come up with the name combine. Like the farm implement of the
same name, this program can be used to separate the wheat from the chaff. I also like it
because it has a similarity to join reminiscent of the similarity of function.

1.1.1 Ways to Use combine

Here are some almost real-world applications of combine that may whet your imagination
for your own uses.

1.1.1.1 Encrypted Data

Suppose you have a file that you would normally want to keep encrypted (say, your cus-
tomer information, which includes their credit card numbers). Suppose further that you
occasionally receive updates of some less sensitive information about the customers.

To update the sensitive file, you could unencrypt the file, load all the data from both
files into a database, merge the data, extract the result from the database (making sure to
wipe the disk storage that was used), and re-encrypt. That leaves the information open to
DBAs and the like during the process, and it sure seems like a lot of steps.

Using combine and your favorite encryption program, the data never has to touch the
disk unencrypted (except in a swap file) so casual observers are unlikely to run across

Chapter 1: Overview of combine 3

sensitive information. In addition an updated encrypted file can be created in one command
line, piping the input and output of the sensitive data through your encryption program.

Here’s a sample command that might do the trick.
gpg -d < secret_file \
| combine -w -o 1-300 \

-r update_information -k 1-10 -m 1-10 -o 11-20 -p \
| gpg -e > updated_secret_file

1.1.1.2 Key Validation

Another example that is often important when receiving data from the outside world is
data validation.

Perhaps you receive product sales data from a number of retailers, which you need to
combine with product information you have elsewhere. To confirm that the file you received
is valid for reporting, you might need to check the product codes, ZIP codes, and retailer
codes against your known valid values.

All the comparisons can be done in a single command, which will result in a status which
will flag us down if anything did not match to our lists of expected values.

combine -w -o 1- \
-r products.txt -k 1-18 -m 11-28 \
-r zip.txt -k 1-5 -m 19-23 \
-r customer.txt -k 1-10 -m 1-10 \
input.txt \

| cmp input.txt
result=$?

That’s probably enough if we are pretty sure that the incoming data is usually clean. If
something does not match up, we can investigate by hand. On the other hand, if we expect
to find differences a little more frequently, we can make some small changes.

The following command makes the match optional, but puts a constant ’$’ at the end of
the record for each match among the three keys to be validated. When there isn’t a match,
combine puts a space into the record in place of the ’$’. We can then search for something
other than ’$$$’ at the end of the record to know which records didn’t match.

combine -w -o 1- \
-r products.txt -k 1-18 -m 11-28 -k ’$’ -p \
-r zip.txt -k 1-5 -m 19-23 -k ’$’ -p \
-r customer.txt -k 1-10 -m 1-10 -k ’$’ -p \
input.txt \

| grep -v ’\$\$\$$’ > input.nomatch

1.2 Reporting Bugs

When you find a bug, please be so kind to report it in a way that will help the maintainer
to understand why it is a bug and how to make it happen (so that the correction can be
tested). The information necessary to make such a determination will include such things

Chapter 1: Overview of combine 4

as a description of the symptoms (not just your impression of the cause), the command line
you used to run the program, the options that were used when building the program, and
anything else that you are not absolutely sure is irrelevant. You can also include the things
that you are absolutely sure are irrelevant, as one is often sure without good reason.

Thank you for taking advantage of this free software. Your information on bugs in your
use of the software are very valuable in keeping it as useful as possible for all users. Please
report bugs to <dpv@world.std.com>

Chapter 2: Invoking combine 5

2 Invoking combine

combine is invoked with the command

combine [general options | data file options]... [reference file options]...
[data files]

The various options are described in the following sections.

The arguments to the command are data files, an optional list of file names to be pro-
cessed or nothing, indicating that the input will come from stdin.

2.1 General Options

The general options are not specific to any particular file and apply to the entire current
run of the program. They are listed below.

‘-R’
‘--check-all-reference’
‘--no-check-all-reference’

For each data record, check for a match with each of the reference files. This
option is set by default. When turned off with ‘--no-check-all-reference’
and a match to at least one reference file is required for the data file record to
be considerd for output, processing of that data file record will be stopped as
soon as a required match is not fulfilled. This could increase speed somewhat
and will change the meaning of any flags or counters set in reference-file-based
input.

‘-f’
‘--flag’ In any output based on a reference file, print a flag with the value ‘1’ if the

record was matched by a data record or ‘0’ otherwise.

‘-n’
‘--count’ In any output based on a reference file, print a new field which is a count of the

number of data records that matched the current reference record.

‘-z number ’
‘--counter-size=number ’

If counters or sums of data fields are being written into reference-based output,
make them number bytes long.

‘--statistics’
‘--no-statistics’

At the end of the processing, write to stderr counts of the number of records
read and matched from each file processed. The option is enabled by default.
When turned off with ‘--no-statistics’ print no statistics.

‘--verbose’
Write all the information that is possible about the processing to stderr. This
includes a summary of the options that have been set and running counters of
the number of records processed.

Chapter 2: Invoking combine 6

2.2 File Options

There are some attributes that apply to any file. They include such things as the way to
tell one record from another, the way to identify fields within a record, and the fiewlds in
a file that you want to write out.

‘-d string ’
‘--output-field-delimiter=string ’

Print string between each pair of fields written to output files. This can be a
comma, a tab character, your mother’s maiden name, or the full text of the
GNU Public License. It is your choice. Of course, it is most useful for it to
be something that would not normally occur in your data fields and something
that your target system will understand. Because combine doesn’t care about
such things, you can even use the null character (\0) or the newline character
(\n).

‘-b string ’
‘--output-record-delimiter=string ’

Similarly here string is whatever string you need to use to tell the records apart
in output files. If you don’t specify it, combine will assume that the usual text
format applies, the newline on GNU operating systems.

‘-D string ’
‘--input-field-delimiter=string ’

Look for string in the associated input file to determine where fields start and
end. It can be any string, but it should be the string that really separates fields
in your file. Because combine doesn’t care about such things, you can even use
the null character (\0) or the newline character (\n).

‘-B string ’
‘--input-record-delimiter=string ’

Similarly here string is whatever string you need to use to tell the records apart
in input files. If you don’t specify it, combine will assume that the usual text
format applies, the newline on GNU operating systems.

‘-L number ’
‘--input-record-length=number ’

If the records are all of the same length (whether of not there is a linefeed or
a ‘W’ between them), you can specify a record length. combine will then split
the file into records all of exactly NUMBER bytes long. If there are linefeeds
or carriage returns between records, be sure to add them to the count. If
the length is not specified, combine will assume the records have a delimiter
between them.

‘-p’
‘--match-optional’

Make it unnecessary to find a match to this file for inclusion in data file based
output and for the further processing of a data record. All matches are required
by default.

Chapter 2: Invoking combine 7

When applied to a reference file, this means that records based on a data record
may be written without a match to a key in this reference file, and any output
from fields in this file will be left blank (or substituted if specified with the ‘-O’
option).
When applied to a data file, this means that in the file based on the data
file records, records will be written at the end of processing for reference file
records that were not matched by a data file record. Any output specified from
fields in the data file will be left blank (or substituted if specified with the ‘-O’
option). If there is more than one reference file, care should be taken, because
the unmatched records from each reference file will each become a record in the
output file. This has no effect on reference-file-based output.

‘-P’
‘--exclude-match’

Require no match to this file for inclusion in data file based output and for the
further processing of a data record. All matches are required and included by
default.
When applied to a reference file, this means that records based on a data record
may only be written when there is no match to a key in this reference file, and
any output from fields in this file will be left blank (or substituted if specified
with the ‘-O’ option).
When applied to a data file, this means that in the file based on the data file
records, records will only be written at the end of processing for reference file
records that were not matched by a data file record. Any output specified from
fields in the data file will be left blank (or substituted if specified with the ‘-O’
option). If there is more than one reference file, care should be taken, because
the unmatched records from each reference file will each become a record in the
output file. This has no effect on reference-file-based output.

2.3 Data Files

A data file is either stdin, one or more files, or both. If there is more than one source,
they should all share a format that fits the specifications provided for output fields, fields
holding numeric values to be summed, and fields to be used as keys for matching.

The following are the commands that specifically affect the processing of the data file.
Some share the same name with options that can also apply to reference files. Those must
be on your command line before you present your first reference file. The others could
appear anywhere on the command line; however, convention dictates that all the data-file
options should be together before the first reference file is named.

‘-w’
‘--write-output’

Signals the program that output records should be written every time a data
record satisfies the matching criteria with the reference files. The record written
will combine all specified output fields from the data file record, the matching
reference file record, and any specified constant values. This option is a po-

Chapter 2: Invoking combine 8

sitional option for all files, and must appear before the first reference file is
named.

‘-t filename ’
‘--output-file=filename ’

If provided, write the data-based output to filename. Otherwise the output will
go to stdout. This option only makes sense if you plan to write data-file-based
output. This is a positional option for all files and must appear before the first
reference file is named.

‘-o range_string ’
‘--output-fields=range_string ’

Write the fields specified by range string as part of the record in any data-
based output. The range specifications share a common format with all field
specifications for combine. This option only makes sense if you plan to write
data-file-based output. This is a positional option and to apply to the data file
it must appear before the first reference file is named.

‘-K string ’
‘--output-constant=string ’

Write string to the data-file-based output. This option only makes sense if you
plan to write data-file-based output. This is a positional option and to apply
to the data file it must appear before the first reference file is named.

‘-s range_string ’
‘--sum-fields=range_string ’

In any reference-file-based output write a sum of the value of the fields specified
by range string. The sum for a given reference file record will come from all
data file records that matched it. This option only makes sense if you have
requested reference-file-based output.

If a precision is provided for a sum field, that precision is honored, and decimal
fractions up to that many digits will be included in the sum. Any further
precision on the input fields will be ignored (without rounding) in the sum.
The resulting sum will be written with a decimal point and the number of
fractional digits implied by the precision.

2.4 Reference Files

A reference file record is expected to match on a set of key fields to a data file record. The
parts of a reference file that are necessary for processing are read entirely into memory. You
can specify as many reference files as you want, depending only on the amount of memory
your system can spare to hold them. For any reference file, it is minimally required that you
specify a file name, a specification of the key fields in the reference file, and a specification
of the matching key fields in the data file.

The following are the options that are related to reference files. They are all positional,
and they apply to the processing of the previously named reference file. (Except of course
for the reference file name itself, which applies to itself.)

Chapter 2: Invoking combine 9

‘-r filename ’
‘--reference-file=filename ’

Use filename as a reference file to match to the data file in processing. This
option introduces a block of positional options that relate to this reference file’s
processing in DataFactoy.

‘-k range_string ’
‘--key-fields=range_string ’

Use the fields specified by range string as a key to match to a corresponding
key in the data file.

‘-m range_string ’
‘--data-key-fields=range_string ’

Use the fields specified by range string as the corresponding key to a key taken
from a reference file.

‘-a range_string ’
‘--hierarchy-key-fields=range_string ’

Use the fields specified by range string as a key to perform a recursive hierar-
chical match within the reference file. This key will be matched against values
specified in the regular key on the reference file.

‘-u’
‘--unique’

Keep only one record for the reference file in memory for each distinct key. By
default combine maintains all the records from the reference file in memory
for processing. This default allows for cartesian products when a key exists
multiple times in both the reference and data files.

‘-h number ’
‘--hash-size=number ’

Use the number provided as a base size for allocating a hash table to store the
records from this reference file. If this number is too small, combine will fail
when it tries to record a record it has no room for. If it is only a little bit too
small, it will cause inefficiency as searching for open space in the hash table will
be difficult.

‘-H keyword ’
‘--hash-movement=keyword ’

One of the keywords binary, number, beginning, or end, indicating how to
turn the key into a number with the best variability and least overlap. The
wise choice of this option can cut processing time significantly. The binary
option is the default, and treats the last few bytes (8 on most computers) of the
key string(s) as a big number. The number option converts the entire key to a
number assuming it is a numeric string. The other two take the least significant
3 bits from each of the first or last few (21 where a 64 bit integer is available)
bytes in the key strings and turns them into a number.

Chapter 2: Invoking combine 10

‘-w’
‘--write-output’

Signals the program that output records should be written for every record
stored for this reference file. This will either be one record for every record in
the reference file or one record for every distinct set of keys in the reference
file, depending on the setting of the option ‘--unique’. The record written will
include all specified output fields from the reference file record, any specified
constant value for this reference file, and any flag, counter, or sums requested.

‘-t filename ’
‘--output-file=filename ’

If provided, write the output based on this reference file to filename. Otherwise
the output will go to stdout. This option only makes sense if you plan to write
output based on this reference file.

‘-o range_string ’
‘--output-fields=range_string ’

Write the fields specified by range string as part of the record in any reference-
file- or data-file-based output. The range specifications share a common format
with all field specifications for combine.

‘-K string ’
‘--output-constant=string ’

Write string to the reference- or data-file-based output.

‘-U’
‘--up-hierarchy’

When traversing the hierarchy from a given reference-file record, use the
values on that record in the ‘--hierarchy-key-fields’ fields to connect
to the ‘--key-fields’ fields of other records from the reference file. For
most purposes, the presence of the connection on the first record suggests a
single parent in a standard hierarchy. The hierarchy traversal stops when the
‘--hierarchy-key-fields’ fields are empty.
If this option is not set, the ‘--key-fields’ fields are used to search for the same
values in the ‘--hierarchy-key-fields’ fields of other records in the same file.
This allows multiple children of an initial record, and suggests going down in
the hierarchy. The hierarchy traversal stops when no further connection can be
made. The traversal is depth-first.

‘-l’
‘--hierarchy-leaf-only’

When traversing a hierarchy, treat only the endpoints as matching records.
Nodes that have onward connections are ignored except for navigating to the
leaf nodes.

‘-F number ’
‘--flatten-hierarchy=number ’

When traversing a hierarchy, act as the ‘hierarchy-leaf-only’, except save
information about the intervening nodes. Repeat the ‘output-fields’ fields
number times (leaving them blank if there were fewer levels), starting from the
first reference record matched.

Chapter 2: Invoking combine 11

2.5 Output Files

There are two basic kinds of output files: one based on the data records and reference
records that match them, the other based on a full set of records from one reference file
with flags, counts, or sums based on the aggregate of the matching data records.

The output file based on the data file consists of information from the data file records
and any matching reference file records. The records that go into data-based output files
can be figured out as follows:

no reference file
If there is no reference file, there will be one record for every record in the
data file, with the exception of any records that were elimitated through an
extension filter. (see Chapter 4 [Extending combine], page 16.)

reference files with ‘--unique’ and ‘--match-optional’ options
If all reference files are specified with the ‘--unique’ and ‘--match-optional’
options, then the records selected for insertion into the data-based output file
will be the same as those that would be selected without a reference file.

reference files without the ‘--unique’ option
If a reference file is not given the ‘--unique’ option and there is more than
one reference record that matches a given data record, then the data record
will be represented more than once in the output file, each time combined with
information from a different matching reference record. If there is more than
one reference file where this is the case, the result will be multiplicative (e.g. 2
matches in each of 2 reference files will produce 4 records). This is the default
setting for a reference file.

reference files without the ‘--match-optional’ option
If a reference file is not given the ‘--match-optional’ option, then any data
record that does not have a match in the reference file will not be represented
in the output file. This is the default setting.

The fields that can appear in data=file-based output can come from the data-file record
and any matching reference file records.

Reference=file-based output files are simpler. Depending on the existence or not of the
‘--unique’ option, the file will have an entry for each of the unique keys or for each of the
records in the reference file, respectively.

The fields in the reference=file-based output are exclusively from the reference file, except
for optional fields that can be summarized from fields on matching data-file records.

The order of the fields in an output record can either be according to the default or it
can be explicitly specified by the user.

In data=file-based output, the standard field order is as follows. All the fields listed are
printed in this order if they are specified. If an output field delimiter is specified, it is put
between every pair of adjacent fields. If there is no match for a given reference file (and
the ‘--match-optional’ option is set for the file), all the fields that would normally be
provided by that file are filled with spaces for fixed-width fields or zero-length for delimited
output.

Chapter 2: Invoking combine 12

• All the data-file output fields (in order)
• The constant string set for the data file
• For each reference file

− The constant string set for the reference file
− All the reference-file output fields

In reference=file-based output, the standard field order is as follows. All the fields listed
are printed in this order if they are specified. If an output field delimiter is specified, it is
put between every pair of adjacent fields.
• All the reference-file output fields OR the key fields if no output fields are given
• A 1/0 flag indicating whether there was any match
• A counter of the number of data records matched
• A sum of each of the data-file sum fields from each matching data-file record

The order of the fields in any output file can be customized using the ‘--field-order’
(or ‘-O’) option. The argument for the option is a comma-separated list of field identifiers.
Each field identifier has 2 parts, a source and a type, separated by a period (.).

The sources are composed of an ‘r’ for reference file or ‘d’ for data file followed by an
optional number. The number indicates which reference file the field comes from and is
ignored for data files. Without a number, the first of each is taken.

A third source ‘s’ represents a substitution in the event that the preceding reference
file field could not be provided because there was no match between that reference file and
the data file. The number following it, if blank or zero, tells Datafactory to take the field
from the data file. Any other number means the corresponding reference file. This allows
the conditional update of fields from the data file, or a prioritization of selections from a
variety of reference files. If you are working with fixed-width fields, you should ensure that
the lengths of the various fields in the substitution chain are the same.

The types are composed similarly. The identifiers are listed below. The number is
ignored for identifiers of string constants, flags, and counters. For output fields, a hyphen-
separated range of fields can be written to avoid having to write a long list. Any number
provided is the number of the field in the order it was specified in the ‘-o’ or ‘-s’ option
on the command line. In delimited-field files this may differ from the field number used in
those options.

‘o’ Output fields from either reference or data files.

‘k’ String constant for either reference or data files.

‘f’ Flag (1/0) for reference files.

‘n’ Counter for reference files.

‘s’ Sum field for reference files.

Here is an example:
--field-order d.o1,d.o2,d.o3,d.k,r1.o1,s2.o1,s0.o4

--field-order d.o1-3,d.k,r1.o1,s2.o1,s0.o4

Chapter 2: Invoking combine 13

In this case, the first three fields from the data file are followed by the constant string from
the data file. Then, if there was a match to reference file 1, the first field from that file
is taken, otherwise if there was a match to reference file 2, the first field from that file is
taken. If neither file matched the data record, the fourth field from the data record is taken
instead.

The second line is equivalent, using a range of fields for convenience.

2.6 Field Specifiers

There are a number of options that require a list of fields from one of the files. All take an
argument consisting of a comma-separated list of individual field specifications.

The individual field specifications are of the form ‘s-e.p(instruction)’. As a standard
(with no field delimiter given for the file), ‘s’ is a number indicating the starting position
of the field within the given file, and ‘e’ is a number pointing out the ending position. If
there is no hyphen, then the single number ‘s’ represents a one-byte field at position ‘s’. If
the first number and a hyphen exist without the number ‘e’, then the field is assumed to
start at ‘s’ and extend to the end of the record. The numbering of the bytes in the record
starts at 1.

If you do provide a delimiter for identifying the borders between fields in your file, then
combine does not need to count bytes, and you just need to provide the field number
(starting at 1) of the fields you want to declare. Currently, giving a range of fields results in
combine acting as though you listed every field from the lower end to the upper end of the
range individually. Any precision or extensibility information you provide will be applied
to each field in the range.

The optional ‘.p’ gives the number of digits of precision with which the field should be
considered. At present its only practical use is in fields to be summed from data files, where
it is used in converting between string and number formats.

The optional ‘(instruction)’ is intended for extensibility. For output fields and key
fields it is a scheme command that should be run when the field is read into the system. If
the associated field specification is a key for matching reference and data records, this can
affect the way the records are matched. If it is a field to be written to an output file, it will
affect what the user sees.

To refer to the field actually read from the source data within the scheme command, use
the following sceme variable in the appropriate place in the command: ‘input-field’

Scheme commands attached to individual fields need to return a character string and
have available only the current text of the field as described above1. In delimited output,
feel free to alter the length of the return string at will. In fixed-width output, it will be your
responsibility to ensure that you return a string of a useful length if you want to maintain
the fixed structure.

In the following string,

1 That’s not strictly true. I discovered the other day that I can create variables in some extension com-
mands and then use them in a subsequent command. That requires a little documentation of the order
of processing so you get the values you want, but I haven’t done that yet. For now, you can know that
a set of field specifiers of the same type (like output fields for reference file 1 or sum fields from the data
file) are processed in order.

Chapter 2: Invoking combine 14

’1-10,15-20.2,30(HiMom input-field),40-’

The fist field runs from position 1 to 10 in the file. The second from 15 to 20, with a stated
(but possibly meaningless) precision of 2. The third is the single byte at position 30, to be
adjusted by replacing it with whatever the instruction HiMom does to it. The fourth field
starts at position 40 and extends to the end of the record.

In a delimited example, the following two sets of options are equivalent.
-D ’,’ -o 4,5,6,7,8
-D ’,’ -o 4-8

In both cases the fourth, fifth, sixth, seventh, and eighth comma-delimited fields are each
treated as an individual field for processing. Note that if you also provide a field order (with
the ‘-O’ option), that order would refer to these fields as 1, 2, 3, 4, and 5 because of the
order in which you specified them, not caring about the order in the original file.

2.7 Emulation

Because of its simularity with join, combine has an emulation mode that allows you to use
the syntax of the join command to start combine.

The emulation can be started by using ‘--emulate join’ option as the fiest option after
the command name. After that, you can use the same options you get with join.

For details of the join command, see See section “Join Invocation” in GNU Coreutils
Manual. When tested against the test cases packaged with GNU Coreutils, results are
identical to join with a couple of exceptions:
• The sort order can be different. combine produces records in the order of the second

input file, wich any unmatched records from the first input file following in an arbitrary
order.

• I change the arguments to the ‘-o’ option in the test script to have quotes around the
field order list when it is separated by spaces. combine can handle the space-delimited
list, but the standard argument handler getopt_long does not interpret them as a
single argument. I don’t see the need to overcome that.

• There is not a specific test, but I have not yet implemented case-insensitive matching.
It would have failed if tested.

• One more option that is not implemented in the emulation are the ‘-j1’ and ‘-j2’
methods of specifying separate keys for the two files. Use ‘-1’ and ‘-2’ for that. The
two obsolete options would be interpreted as speciying field 1 or field 2 as the common
join key, respectively.

There are also a number of features of combine that come through in the emulation.
The main features relate to the keys: the sort order of the records in relation to the keys
does not matter to combine, also combine allows you to specify a list of key fields (comma-
delimited) rather than just one as arguments to ‘-1’, ‘-2’, and ‘-j’. You should make sure
that the number of key fields is the same.

Another feature is that the second input file can actually be as many files as you want.
That way you can avoid putting the records from several files together if not otherwise
necessary.

Chapter 3: How combine Processes Files 15

3 How combine Processes Files

The base of combine reads records from a data file (or a series of them in a row) and if
there is an output request for data records, it writes the requested fields out to a file or to
stdout. Here is an example of this most simple version of events.

combine --write-output --output-fields=1-

This is essentially an expensive pipe. It reads from stdin and writes the entire record back
to stdout.

Introducing a reference file gives more options. Now combine reads the reference file
into memory before reading the data file. For every data record, combine then checks to
see if it has a match. The following example limits the simple pipe above by restricting the
output to those records from stdin that share the first 10 bytes in common with a record
in the reference file.

combine -w -o 1- -r reference_file.txt --key-fields=1-10 \
--data-key-fields=1-10 --unique

Note that the option ‘--unique’ is used here to prevent more than one copy of a key from
being stored by combine. Without it, duplicate keys in the reference file, when matched,
would result in more than one copy of the matching data record.

The other option with a reference file is to have output based on the records in that
file, with indicators of how the data file records were able to match to them. In the next
example, the same match as above is done, but this time we write out a record for every
unique key, with a flag set to ‘1’ if it was matched by a data record or ‘0’ otherwise. It still
reads the data records from stdin and writes the output records to stdout.

combine -r -f reference_file.txt -k 1-10 -m 1-10 -u -w -o 1-10

Of course, you might want both sets of output at the same time: the list of data records
that matched the keys in the reference file and a list of keys in the reference file with an
indication of which ones were matched. In the prior two examples the two different kinds
of output were written to stdout. You can do that still if you like, and then do a little
post-processing to determine where the data-based records leave off and the reference-based
records begins. A simpler way, however, is to let combine write the information to separate
files.

In the following example we combine the output specifications from the prior two
examples and give them each a filename. Note that the first one has a spelled-out
‘--output-file’ while the second one uses the shorter 1-letter option ‘-t’.

combine -w -o 1- --output-file testdata.txt \
-r -f reference_file.txt -k 1-10 -m 1-10 \
-u -w -o 1-10 -t testflag.txt

Chapter 4: Extending combine 16

4 Extending combine

If combine was built with Guile (GNU’s Ubiquitous Intelligent Extensibility Language), you
can do anything you want (within reason) to extend combine. This would have been done
when combine was compiled and installed on your computer. In a number of places, there
are built-in opportunities to call Guile with the data that is currently in process. Using
these options, you can use your favorite modules or write your own functions in scheme to
manipulate the data and to adjust how DafaFactory operates on it.

The most common method (in my current usage) of extending combine is to alter the
values of fields from the input files before they are used for matching or for output. This is
done inside the field list by adding the scheme statement after the range and precision. This
is covered in the section on field specifications. See Section 2.6 [Field Specifiers], page 13,
for details.

Another useful option is the ability to initialize Guile with your own program. To do this,
you can use the ‘--extension-init-file’ (or ‘-X’) followed by the file name to ask combine
to load that scheme file into Guile before any processing. In that way your functions will
be available when you need them in the running of the program. It certainly beats writing
something complicated on the command line.

In addition, there are Guile modules included in the distribution, which can be used in
extension scripts.

4.1 Extension Options

The reamining extensibility options are called at various points in the program: when it
starts, when a file is started, when a match is found, when a record is read, when a record
is written, when a file is closed, and at the very end of the program. The options are listed
below along with the way to get access to the relevant data.

The various non-field=specific options are as follows. They all occur as arguments to
the option ‘--extension’ (or ‘-x’).

‘lscheme-command ’
Filter records from the current file using the scheme command provided. The
scheme command must return ‘#t’ (to keep processing the record) or ‘#f’ (to ig-
nore this record and move on to the next). The variables ‘reference-field-n’
or ‘data-field-n’ will be available to the scheme command, depending on
whether the record to be filtered is from the data file or a reference file. In the
variable names ‘n’ represents the number of the specified output field, numbered
from 1.

‘mscheme-command ’
Validate a proposed match using the scheme command provided. The scheme
command must return ‘#t’ (to confirm that this is a good match) or ‘#f’ (to
tell combine that this is not a match). The variables ‘reference-field-n’ and
‘data-field-n’ will be available to the scheme command from the reference
and data records involved in a particular match. In the variable names ‘n’
represents the number of the specified output field, numbered from 1. The

Chapter 4: Extending combine 17

extension specification affects the match between the data file and the last
named reference file.

‘hscheme-command ’
Validate a proposed match between two records in the same hierarchy using the
scheme command provided. The scheme command must return ‘#t’ (to confirm
that this is a good match) or ‘#f’ (to tell combine that this is not a match).
The variables ‘reference-field-n’ and ‘prior-reference-field-n’ will be
available to the scheme command from the prior and current reference records
involved in a particular match. In the variable names ‘n’ represents the number
of the specified output field, numbered from 1. The extension specification
affects the match while traversing the hierarchs in the last named reference file.

‘rscheme-command ’
Modify a record that has just been read using the scheme command provided.
The scheme command must return a string, which will become the new value
of the input record to be processed. The input record iteself can be referred to
in the scheme command by using the variable ‘input-record’ in the scheme
command at the right place. The records affected by this option are the records
from the most recently named reference file, or from the data file if no reference
file has yet been named.

As an example, consider that you may have received a file from someone who strips all
the trailing spaces from the end of a record, but you need to treat it with a fixed-width
record layout. Assuming that you have definied a scheme function rpad in the initialization
file ‘util.scm’, you can use the following command to get at the field in positions 200-219,
with spaces in place of the missing rest of the record.

combine -X util.scm -x ’r(rpad input-record 219 #\space)’ \
-o 200-219 trimmed_file.txt

The same syntax works with the other ‘--extension’ options.

4.2 Guile Modules

Here we talk about Guile modules that are distributed with combine. At the moment, those
are limited to date processing.

In addition, the file ‘util.scm’ in the distribution contains a few functions I have found
handy. They are not documented here.

4.2.1 Calendar Functions

Included in the combine package are two Guile modules to work with dates from a number
of calendars, both obscure and common. The basis for them is the set of calendar functions
that are shipped with Emacs.

The reason that these functions deserve special notice here is that date comparisons are
a common type of comparison that often cannot be made directly on a character string. For
example I might have trouble knowing if "20030922" is the same date as "22 September
2003" if I compared strings; however, comparing them as dates allows me to find a match.

Chapter 4: Extending combine 18

We can even compare between calendars, ensuring that "1 Tishri 5764" is recognized as the
same date as "20030927".

The calendar module can be invoked as (use-modules (date calendar)). It provides
functions for converting from a variety of calendars to and from and absolute date count,
whose 0-day is the imaginary date 31 December 1 B.C. In the functions, the absolute date is
treated as a single number, and the dates are lists of numbers in (month day year) format
unless otherwise specified.

The calendar functions are as follow:
• calendar-julian-from-absolute
• calendar-absolute-from-julian
• calendar-absolute-from-islamic
• calendar-islamic-from-absolute
• calendar-hebrew-from-absolute
• calendar-absolute-from-hebrew
• calendar-absolute-from-chinese ‘(cycle year month day)’
• calendar-chinese-from-absolute ‘(cycle year month day)’
• calendar-absolute-from-french
• calendar-french-from-absolute
• calendar-absolute-from-coptic
• calendar-coptic-from-absolute
• calendar-absolute-from-ethiopic
• calendar-ethiopic-from-absolute
• calendar-absolute-from-iso ‘(week day year)’
• calendar-iso-from-absolute ‘(week day year)’
• calendar-absolute-from-persian
• calendar-persian-from-absolute
• calendar-mayan-long-count-from-absolute ‘(baktun katun tun uinal kin)’
• calendar-mayan-haab-from-absolute ‘(day . month)’
• calendar-mayan-tzolkin-from-absolute ‘(day . name)’
• calendar-445fiscal-from-absolute ‘(month workday year)’
• calendar-absolute-from-445fiscal ‘(month workday year)’

4.2.2 Calendar Reference

Here are some variables that can be used as references to get names associated with the
numbers that the date conversion functions produce for months.

‘gregorian-day-name-alist’
An associative list giving the weekdays in the Gregorian calendar in a variety
of languages. Each element of this list is a list composed of a 2-letter language
code (lowercase) and a list of 7 day names.

Chapter 4: Extending combine 19

‘gregorian-month-name-alist’
An associative list giving the months in the Gregorian calendar in a variety of
languages. Each element of this list is a list composed of a 2-letter language
code (lowercase) and a list of 12 month names.

‘calendar-islamic-month-name-array’
A list of the months in the Islamic calendar.

‘calendar-hebrew-month-name-array-common-year’
A list of the months in the standard Hebrew calendar.

‘calendar-hebrew-month-name-array-leap-year’
A list of the months in the leap year Hebrew calendar.

‘chinese-calendar-celestial-stem’
‘chinese-calendar-terrestrial-branch’
‘lunar-phase-name-alist’
‘solar-n-hemi-seasons-alist’
‘solar-s-hemi-seasons-alist’
‘french-calendar-month-name-array’

A list of the months in the French Revolutionary calendar.

‘french-calendar-multibyte-month-name-array’
A list of the months in the French Revolutionary calendar, using multibyte
codes to represent the accented characters.

‘french-calendar-day-name-array’
A list of the days in the French Revolutionary calendar.

‘french-calendar-multibyte-special-days-array’
A list of the special days (non weekdays) in the French Revolutionary calendar,
using multibyte codes to represent the accented characters.

‘french-calendar-special-days-array’
A list of the special days (non weekdays) in the French Revolutionary calendar.

‘coptic-calendar-month-name-array’
A list of the months in the Coptic calendar.

‘ethiopic-calendar-month-name-array’
A list of the months in the Ethiopic calendar.

‘persian-calendar-month-name-array’
A list of the months in the Persian calendar.

‘calendar-mayan-haab-month-name-array’
‘calendar-mayan-tzolkin-names-array’

4.2.3 Calendar Parsing

The calendar parsing module can be invoked as (use-modules (date parse)).
The most useful function in the module is parse-date. It takes as arguments a date

string and an output format. The date string is parsed as well as possible in descending

Chapter 4: Extending combine 20

order of preference for format in case of ambiguity. The function returns the date triplet
(or other such representation) suggested by the format string.

The supported format strings are the words in the function names of the form calendar-
xxxx-from-absolute that would take the place of the xxxx. See Section 4.2.1 [Calendar
Functions], page 17, for more information.

The parsing of the date string depends on the setting of a couple of variables. Look inside
the file ‘parse.scm’ for details. The list parse-date-expected-order lists the order in which
the parser should look for the year, month, and day in case of ambiguity. The list parse-
date-method-preference give more general format preferences, such as 8-digit, delimited, or
a word for the month and the expected incoming calendar.

Here are a few examples of pasing a date and putting it out in some formats:
guile> (use-modules (date parse))
guile> (parse-date "27 September 2003" "gregorian")
(9 27 2003)
guile> (parse-date "27 September 2003" "julian")
(9 14 2003)

The 13 day difference in the calendars is the reason that the Orthodox Christmas is 2
weeks after the Roman Catholic Christmas.

guile> (parse-date "27 September 2003" "hebrew")
(7 1 5764)

Note that the Hebrew date is Rosh HaShannah, the first day of the year 5764. The
reason that the month is listed as 7 rather than 1 is inherited from the Emacs calendar im-
plementation. Using the month list in calendar-hebrew-month-name-array-common-year or
calendar-hebrew-month-name-array-leap-year correctly gives "Tishri", but since the extra
month comes mid-year, it is easier for programming to shift around a bit.

guile> (parse-date "27 September 2003" "islamic")
(7 30 1424)
guile> (parse-date "27 September 2003" "iso")
(39 6 2003)

This is the 6th day (Saturday) of week 39 of the year.
guile> (parse-date "27 September 2003" "mayan-long-count")
(12 19 10 11 7)

I won’t get into the detail, but the five numbers reflect the date in the Mayan calendar
as currently understood.

Generally, I’d recommend using the more specific functions if you are sure of the date
format you expect. For comparing dates, I would further recommend comparing the absolute
day count rather than any more formatted format.

Chapter 5: Applying combine 21

5 Applying combine

There are lots of ways to apply combine to problems that will pop up in the course of
day-to-day life. (Of course this fits into your day-to- day life a bit more if you have a job
or hobby that regularly puts you into contact with data files.

Here are a few topics explored in more detail.

5.1 Rearranging Fields

When you do not use any reference files, combine still gives you the opportunity to create
a new record layout based on the records you read.

This is an advantage over the cut command because cut allows you only to omit portions
of the record, combine also allows you to reorder those fields you keep and to add a constant
field somewhere in the order. In addition, combine gives you the chance to convert between
fixed-width and delimited formats, where cut keeps the format you started with (although
the GNU version does let you change delimiters).

Clearly, flexible tools like awk or sed or any programming language will also make this
kind of thing (and with a little work anything combine can do) possible. It may be that
they are a more efficient choice, but I prefer to have combine.

As an example, here is a fixed width file, which contains in its record layout some address
book information. If I need to make a tab-delimited file of names and phone numbers to
upload into my mobile phone, I can use the command that follows to get the output I want.

$ cat testadd.txt
2125551212Doe John 123 Main StreetNew York NY10001
2025551212Doe Mary 123 Main StreetWashingtonDC20001
3015551212Doe Larry 123 Main StreetLaurel MD20707
6175551212Doe Darryl 123 Main StreetBoston MA02115
6035551212Doe Darryl 123 Main StreetManchesterNH02020

Here is a command that graps the first and last name and the phone number and tacks
the word "Home" on the end so that my phone marks the number with a little house.

Note that the statistics and the output all show up on the screen if you do not say
otherwise. The statistics are on stderr and the output on stdout, so you can redirect
them differently. You can also use the option ‘--output-file’ (or ‘-t’) to provide an
output file, and you can suppress the statistics if you want with ‘--no-statistics’.

% combine --write-output --output-field-delimiter=" " \
--output-fields=21-30,11-20,1-10 \
--output-constant="Home" testadd.txt

Statistics for data file testadd.txt
Number of records read: 5
Number of records dropped by filter: 0
Number of records matched on key: 5
Number of records written: 5

John Doe 2125551212 Home
Mary Doe 2025551212 Home

Chapter 5: Applying combine 22

Larry Doe 3015551212 Home
Darryl Doe 6175551212 Home
Darryl Doe 6035551212 Home

For reference, here is a comparable SQL query that would select the same data assuming
a table were set up containing the data in the file above.

SELECT First_Name, Last_Name, Phone_Number, ’Home’
FROM Address_Book;

A comparable awk program would be something like this.
BEGIN {OFS = "\t"}
{

print substr ($0, 21, 10), substr ($0, 11, 10), substr ($0, 1, 10), "Home";
}

5.2 Aggregation

One feature of combine is aggregation. In other words, based on a set of keys in a data file,
create a new file containing a summary record for each unique combination of values that
appears in those keys.

This is a special case of reference-file based output in that the reference file and the data
file are the same file. We are using it both to build the list of keys and to provide the values
to summarize.

Here is a simple example. Suppose my 4-year-old were flipping Sacajawea dollar coins
and recording the results, along with the time and the date. A portion of the resulting file
might look like this:

Monday 27 Oct 2003 14:02:01 Head 1.00
Monday 27 Oct 2003 14:03:05 Head 1.00
Monday 27 Oct 2003 14:03:55 Tail 1.00
Monday 27 Oct 2003 14:04:30 Head 1.00
Monday 27 Oct 2003 14:06:12 Tail 1.00
Monday 27 Oct 2003 14:08:43 Head 1.00
Monday 27 Oct 2003 14:54:52 Head 1.00
Monday 27 Oct 2003 19:59:59 Tail 1.00
Tuesday 28 Oct 2003 08:02:01 Tail 5.00
Tuesday 28 Oct 2003 08:02:16 Tail 5.00
Tuesday 28 Oct 2003 08:02:31 Head 5.00
Tuesday 28 Oct 2003 08:02:46 Tail 5.00
Wednesday 29 Oct 2003 12:02:09 Head 10.00

Then if I wanted to measure her daily performance, I could count the number of coin
flips per day, with the following command.

The option ‘--data-is-reference’ tells the program to read the file only once, bulding
the list of keys as it goes. This is useful for aggregations, and it requires that the key fields
be the same and that we only keep one copy of each key (with the ‘--unique’ option).

The records come out in an unspecified order. If you require a specific order, you can
pipe the result through the sort command.

Chapter 5: Applying combine 23

% combine --input-field-delimiter=" " --data-is-reference \
--count --reference-file=testcoin.txt \
--output-field-delimiter="," -D " " \
--key-fields=2 --data-key-fields=2 --write-output \
--output-fields=2 --unique testcoin.txt

28 Oct 2003,4
29 Oct 2003,1
27 Oct 2003,8
Statistics for reference file testcoin.txt
Number of records read: 13
Number of records dropped by filter: 0
Number of records stored: 3
Number of records matched on key: 3
Number of records matched fully: 3
Number of reference-data matches: 13

An equivalent SQL statement, assuming that the table has been created would be.

SELECT Date, COUNT (Result)
FROM Coinflip
GROUP BY Date;

If she wanted to count the number of heads and tails, and also the amount she bet on
each, she could do the following. (I have shortened the options you have already seen to
their 1-byte equivalents.)

The specification of the field to sum says to keep 2 decimal places. combine works with
integers if you don’t say otherwise. The option ‘--counter-size’ tells the program to use
at least that many bytes to present counters and sums.

% combine -D " " -M -n --sum-fields=5.2 --counter-size=8 \
-r testcoin.txt -d "," -D " " -k 4 -m 4 -w -o 4 \
-u testcoin.txt

Head, 7, 20.00
Tail, 6, 18.00
Statistics for reference file testcoin.txt
Number of records read: 13
Number of records dropped by filter: 0
Number of records stored: 2
Number of records matched on key: 2
Number of records matched fully: 2
Number of reference-data matches: 13

An equivalent SQL statement, assuming again that the table has been created would be.

SELECT Result, COUNT (Result), Sum (Wager)
FROM Coinflip
GROUP BY Result;

Chapter 5: Applying combine 24

5.3 Finding Changes

If you get the same file again and again, and you want to see what’s different, the canonical
method is to use the diff command. It will list for you those records that are unique to
each file, and those that appear to have changed. One drawback is that it requires the
records in the two files to be in the same order. Another is that it does not pay attention
to the key fields that may be important to you.

When I want to find the changes in a file, including additions, deletions, and any changes
for the information about a key I normally use 4 applications of combine. One command
is suffucuent to find the new keys. One is enough to find those that are no longer there. A
third finds everything that is different, and the fourth finds the before and after image of
keys whose information has changed.

As an example, suppose my bridge club’s roster has a name and a phone number, sep-
arated by commas, for each member. The following four commands will identify the new
members, the departed members, and those whose phone number has changed.

%# Reference file is optional, so unmatched data records will have
%# 2 blank fields at the end.
% combine -D , -d , -w -o 1-2 -r old_roster.txt -D , -k 1 -m 1 -p \

-o 1-2 inew_roster.txt | grep -v ’ , $’ > new_member.txt
%# Data file is optional, so unmatched reference records will have
%# 2 blank fields at the beginning.
% combine -D , -d , -p -w -o 1-2 -r old_roster.txt -D , -k 1 -m 1 \

-o 1-2 inew_roster.txt | grep -v ’^ , ’ > departed_member.txt
%# Both files are optional, so any unmatched records will have
%# blank fields at the beginning or end. Here we match on the
%#entire record rather than the key as in the above two examples.
% combine -D , -d , -p -w -o 1-2 -r old_roster.txt -D , \

-k 1-2 -m 1-2 -o 1-2 -p inew_roster.txt | grep -v ’ , ’ \
> all_changes.txt

%# Match up the before and after versions of an entry to see changes.
% combine -D , -d , -w -o 1-2 -r all_changes.txt -D , -k 3 -m 1 -o 2 \

all_changes.txt | grep -v ’ , ’ > changed_member.txt

TO BE CONTINUED

5.4 Hierarchies

A hierarchy tends to be an organization where there is a directional one-to-many relationship
between parent records and their associated children. combine works with hierarchies within
reference files when the file has a record for each node and each record points to its parent
in the hierarchy.

Because the hierarchy is assumed to be stored in a reference file, it is accessed by match-
ing to a data record. Once an individual reference record has been matched to the data
record, its relationship to other records within the hierarchy is followed through the hierar-
chy until there is no further to go.

Chapter 5: Applying combine 25

The standard process is to assume that the key that matched to the data file key is
at the top of the hierarchy. When traversing the hierarchy, combine looks for the key on
the current record in the hierarchy key of other reference records. This repeats until there
are no further linkages from one record to the next. For each record that is linked to the
hierarchy, that record is treated as a reference record that matched the data record.

In this section, we’ll use the following hierarchy file. It is a simple hierarchy tree with
‘Grandfather’ as the top node and 2 levels of entries below.

Grandfather,
Father,Grandfather
Uncle,Grandfather
Me,Father
Brother,Father
Cousin,Uncle

If my data file consisted only of a record with the key ‘Grandfather’, then the following
command would result in the records listed after it. Each record written includes the entry
itself and its parent.

combine -D ’,’ -w -d ’,’ -r test1.tmp -k 1 -m 1 -a 2 -D ’,’ \
-o 1-2 test2.tmp

Grandfather,
Father,Grandfather
Me,Father
Brother,Father
Uncle,Grandfather
Cousin,Uncle

If we are only interested in the endpoints (in this case all the lowest-level descendants
of ‘Grandfather’), we can use the option ‘-l’.

combine -D ’,’ -w -d ’,’ -r test1.tmp -k 1 -m 1 -a 2 -D ’,’ -o 1 \
-l test2.tmp

Me
Brother
Cousin

We can arrive at the same number of records, each containing the entire hierarchy
traversed to get to the leaf nodes, by using the option ‘--flatten-hierarchy’ (‘-F’). This
option takes a number as an argument, and then includes information from that many
records found in traversing the hierarchy, starting from the record that matched the data
record. This example tells combine to report three levels from the matching ‘Grandfather’
record.

combine -D ’,’ -w -d ’,’ -r test1.tmp -k 1 -m 1 -a 2 -D ’,’ -o 1 \
-F 3 test2.tmp

Grandfather,Father,Me
Grandfather,Father,Brother
Grandfather,Uncle,Cousin

Chapter 5: Applying combine 26

As with other areas within combine, the hierarchy manipulation is extensible through
Guile. The key fields can be modified as with any other fields. See Section 2.6 [Field
Specifiers], page 13, for details. The matches within the hierarchy can be further filtered,
using the ‘h’ suboption of the option ‘-x’. (see Chapter 4 [Extending combine], page 16.)
As with matches between reference records and data this filtering can allow you to perform
fuzzy comparisons, to do more complex calculations to filter the match, or to decide when
you have gone far enough and would like to stop traversing the hierarchy.

Chapter 6: Future Work 27

6 Future Work

Here is a short list of things that we think will be useful in the near future:
Indexed files. Add the ability to work with a reference file through an index rather than

loading the whole thing into a hash table. Open questions are the format of the index and
whether to put the entire index into memory, or work with it from disk.

Index 28

Index

C
calendar functions . 17
calendar parsing . 19
calendar reference . 18

D
data file . 7

E
extension options . 16
extensions, calendar . 17

F
file options . 6
file structure options . 6
file, data . 7
file, reference . 8

G
general options . 5

guile modules . 17

M
modules, calendar . 17
modules, guile . 17

O
options, data file . 7
options, extension. 16
options, file. 6
options, file structure . 6
options, general . 5
options, reference file . 8

P
parsing, calendar . 19

R
reference file . 8
reference strings, calendar . 18

i

Table of Contents

combine Manual . 1

1 Overview of combine . 2
1.1 Introduction . 2

1.1.1 Ways to Use combine . 2
1.1.1.1 Encrypted Data . 2
1.1.1.2 Key Validation . 3

1.2 Reporting Bugs . 3

2 Invoking combine . 5
2.1 General Options. 5
2.2 File Options . 5
2.3 Data Files . 7
2.4 Reference Files . 8
2.5 Output Files . 10
2.6 Field Specifiers . 13
2.7 Emulation . 14

3 How combine Processes Files 15

4 Extending combine . 16
4.1 Extension Options. 16
4.2 Guile Modules . 17

4.2.1 Calendar Functions . 17
4.2.2 Calendar Reference . 18
4.2.3 Calendar Parsing . 19

5 Applying combine . 21
5.1 Rearranging Fields . 21
5.2 Aggregation . 22
5.3 Finding Changes . 23
5.4 Hierarchies . 24

6 Future Work . 27

Index . 28

	combine Manual
	Overview of combine
	Introduction
	Ways to Use combine
	Encrypted Data
	Key Validation

	Reporting Bugs

	Invoking combine
	General Options
	File Options
	Data Files
	Reference Files
	Output Files
	Field Specifiers
	Emulation

	How combine Processes Files
	Extending combine
	Extension Options
	Guile Modules
	Calendar Functions
	Calendar Reference
	Calendar Parsing

	Applying combine
	Rearranging Fields
	Aggregation
	Finding Changes
	Hierarchies

	Future Work
	Index

